Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Neural network analysis of bioconvection effects on heat and mass transfer in Non-Newtonian chemically reactive nanofluids

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10256384" target="_blank" >RIV/61989100:27740/24:10256384 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2214157X2401565X?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2214157X2401565X?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.csite.2024.105534" target="_blank" >10.1016/j.csite.2024.105534</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Neural network analysis of bioconvection effects on heat and mass transfer in Non-Newtonian chemically reactive nanofluids

  • Popis výsledku v původním jazyce

    Using artificial neural networks, this study sought to investigate the magneto Williamson twophase nanofluid, taking into account chemical reactions and the motion of gyrotactic motile microorganisms. Fluid flow behavior is influenced by chemical reactions, magnetic effects, Brownian motion, and thermophoresis, according to the study. Thermal transmission is enhanced in non-Newtonian fluids as a result of their propensity to thin under shear, increased turbulence, and superior convective heat transfer. As a result of the fluid&apos;s increased thermal conductivity, the incorporation of nanoparticles enhances heat conduction. Additionally, epidermis friction, Nusselt and Sherwood numbers, and the quantity of motile microorganisms were assessed in the study. The overall Absolute Errors lies in the range of 10-2to 10-10.The mean squared error generated by Neural Networks lies in the range of 10-02 - 10-10, and 10- 02 - 10-09 respectively. Suction or injection parameter and Prandtl number have an inverse relation with fluid temperature, while Thermophoretic parameter have a direct relation. Thermophoretic parameter, Schmidt number and suction or injection parameter have an inverse relation with the concentration of nanofluid and gyrotactic microorganisms&apos; density, while micro-organisms density have a direct relation with the microorganisms. Engineering and medicine have utilized bioconvection, a process involving heat transfer and microorganism motion, in the development of nanomedicine, pharmacokinetics, drug delivery, and biosensors, among others. Solvers utilizing stochastic numerical computing include nonlinear networks, atomistic physics, thermodynamics, astrometry, fluid mechanics, nanobiology. As a result, variant scenarios are then tested, trained, and validated, in order to prove its accuracy.

  • Název v anglickém jazyce

    Neural network analysis of bioconvection effects on heat and mass transfer in Non-Newtonian chemically reactive nanofluids

  • Popis výsledku anglicky

    Using artificial neural networks, this study sought to investigate the magneto Williamson twophase nanofluid, taking into account chemical reactions and the motion of gyrotactic motile microorganisms. Fluid flow behavior is influenced by chemical reactions, magnetic effects, Brownian motion, and thermophoresis, according to the study. Thermal transmission is enhanced in non-Newtonian fluids as a result of their propensity to thin under shear, increased turbulence, and superior convective heat transfer. As a result of the fluid&apos;s increased thermal conductivity, the incorporation of nanoparticles enhances heat conduction. Additionally, epidermis friction, Nusselt and Sherwood numbers, and the quantity of motile microorganisms were assessed in the study. The overall Absolute Errors lies in the range of 10-2to 10-10.The mean squared error generated by Neural Networks lies in the range of 10-02 - 10-10, and 10- 02 - 10-09 respectively. Suction or injection parameter and Prandtl number have an inverse relation with fluid temperature, while Thermophoretic parameter have a direct relation. Thermophoretic parameter, Schmidt number and suction or injection parameter have an inverse relation with the concentration of nanofluid and gyrotactic microorganisms&apos; density, while micro-organisms density have a direct relation with the microorganisms. Engineering and medicine have utilized bioconvection, a process involving heat transfer and microorganism motion, in the development of nanomedicine, pharmacokinetics, drug delivery, and biosensors, among others. Solvers utilizing stochastic numerical computing include nonlinear networks, atomistic physics, thermodynamics, astrometry, fluid mechanics, nanobiology. As a result, variant scenarios are then tested, trained, and validated, in order to prove its accuracy.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20300 - Mechanical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    O - Projekt operacniho programu

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Case Studies in Thermal Engineering

  • ISSN

    2214-157X

  • e-ISSN

    2214-157X

  • Svazek periodika

    64

  • Číslo periodika v rámci svazku

    December

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    26

  • Strana od-do

  • Kód UT WoS článku

    001370785300001

  • EID výsledku v databázi Scopus

    2-s2.0-85210065347