Lie group classification and conservation laws of a (2+1)-dimensional nonlinear damped Klein–Gordon Fock equation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10256394" target="_blank" >RIV/61989100:27740/24:10256394 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2666818124003486" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2666818124003486</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.padiff.2024.100962" target="_blank" >10.1016/j.padiff.2024.100962</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Lie group classification and conservation laws of a (2+1)-dimensional nonlinear damped Klein–Gordon Fock equation
Popis výsledku v původním jazyce
In this article, the (2+1)-dimensional nonlinear damped Klein-Gordon Fock equation is studied using the classical Lie symmetry method. A complete Lie group classification is conducted to derive the specific forms of the arbitrary smooth functions included in the equation, resulting in two distinct cases. Using the similarity transformation method, the reductions of the considered equation in the form of ordinary differential equations are obtained. Several invariant solutions including the traveling wave solutions and soliton solutions of the (2+1)-dimensional nonlinear damped Klein-Gordon Fock equation are uncovered. Also, the results are represented through 2D and 3D graphs with their physical interpretations. Notably, using the partial Lagrangian method, the conservation laws are derived, which also yield two separate cases with several subcases. These results offer better insights into the solution properties of nonlinear damped Klein-Gordon Fock equation and other complex nonlinear wave equations. (C) 2024 The Authors
Název v anglickém jazyce
Lie group classification and conservation laws of a (2+1)-dimensional nonlinear damped Klein–Gordon Fock equation
Popis výsledku anglicky
In this article, the (2+1)-dimensional nonlinear damped Klein-Gordon Fock equation is studied using the classical Lie symmetry method. A complete Lie group classification is conducted to derive the specific forms of the arbitrary smooth functions included in the equation, resulting in two distinct cases. Using the similarity transformation method, the reductions of the considered equation in the form of ordinary differential equations are obtained. Several invariant solutions including the traveling wave solutions and soliton solutions of the (2+1)-dimensional nonlinear damped Klein-Gordon Fock equation are uncovered. Also, the results are represented through 2D and 3D graphs with their physical interpretations. Notably, using the partial Lagrangian method, the conservation laws are derived, which also yield two separate cases with several subcases. These results offer better insights into the solution properties of nonlinear damped Klein-Gordon Fock equation and other complex nonlinear wave equations. (C) 2024 The Authors
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Partial Differential Equations in Applied Mathematics
ISSN
2666-8181
e-ISSN
2666-8181
Svazek periodika
12
Číslo periodika v rámci svazku
December
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
19
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85207149433