Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Exploring the Lower and Upper Solutions Approach for ABC-Fractional Derivative Differential Equations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10256439" target="_blank" >RIV/61989100:27740/24:10256439 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s40819-024-01803-8" target="_blank" >https://link.springer.com/article/10.1007/s40819-024-01803-8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s40819-024-01803-8" target="_blank" >10.1007/s40819-024-01803-8</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Exploring the Lower and Upper Solutions Approach for ABC-Fractional Derivative Differential Equations

  • Popis výsledku v původním jazyce

    The lower and upper solution approach has been widely employed in the literature to ensure the existence of solutions for integer-order boundary value problems. Therefore, in this proposed study, our primary objective is to extend this method to establish the existence results for Atangna-Baleanu-Caputo (ABC) fractional differential equations of order 0&lt;γ&lt;1, with generalized nonlinear boundary conditions. We propose a generalized approach that unifies the existence criteria for certain specific boundary value problems formulated using the ABC fractional-order derivative operator, particularly addressing periodic and anti-periodic cases as special instances. The framework of the proposed generalized approach relies heavily on the concept of coupled lower and upper solutions together with certain fixed point results, including Arzela-Ascoli and Schauder’s fixed point theorems. By means of the generalized approach, we first define appropriate lower and upper solutions that bound the potential solution. We then construct a modified problem that incorporates these bounding solutions, ensuring the existence of a solution to the original problems without relying on iterative techniques. This approach involves verifying that the lower solution is less than or equal to the upper solution, and that both satisfy the given boundary conditions, thus guaranteeing the existence of a solution within the specified bounds. The inclusion of the specific examples with periodic and anti-periodic boundary conditions further reinforces the validity and relevance of our theoretical results. © The Author(s), under exclusive licence to Springer Nature India Private Limited 2024.

  • Název v anglickém jazyce

    Exploring the Lower and Upper Solutions Approach for ABC-Fractional Derivative Differential Equations

  • Popis výsledku anglicky

    The lower and upper solution approach has been widely employed in the literature to ensure the existence of solutions for integer-order boundary value problems. Therefore, in this proposed study, our primary objective is to extend this method to establish the existence results for Atangna-Baleanu-Caputo (ABC) fractional differential equations of order 0&lt;γ&lt;1, with generalized nonlinear boundary conditions. We propose a generalized approach that unifies the existence criteria for certain specific boundary value problems formulated using the ABC fractional-order derivative operator, particularly addressing periodic and anti-periodic cases as special instances. The framework of the proposed generalized approach relies heavily on the concept of coupled lower and upper solutions together with certain fixed point results, including Arzela-Ascoli and Schauder’s fixed point theorems. By means of the generalized approach, we first define appropriate lower and upper solutions that bound the potential solution. We then construct a modified problem that incorporates these bounding solutions, ensuring the existence of a solution to the original problems without relying on iterative techniques. This approach involves verifying that the lower solution is less than or equal to the upper solution, and that both satisfy the given boundary conditions, thus guaranteeing the existence of a solution within the specified bounds. The inclusion of the specific examples with periodic and anti-periodic boundary conditions further reinforces the validity and relevance of our theoretical results. © The Author(s), under exclusive licence to Springer Nature India Private Limited 2024.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10300 - Physical sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Applied and Computational Mathematics

  • ISSN

    2349-5103

  • e-ISSN

    2199-5796

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    16

  • Strana od-do

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85208114289