Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

High-Density Atomic Level Defect Engineering of 2D Fe-Based Metal-Organic Frameworks Boosts Oxygen and Hydrogen Evolution Reactions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10256793" target="_blank" >RIV/61989100:27740/24:10256793 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202405936" target="_blank" >https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202405936</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/advs.202405936" target="_blank" >10.1002/advs.202405936</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    High-Density Atomic Level Defect Engineering of 2D Fe-Based Metal-Organic Frameworks Boosts Oxygen and Hydrogen Evolution Reactions

  • Popis výsledku v původním jazyce

    Electrocatalysts based on metal-organic frameworks (MOFs) attracted significant attention for water splitting, while the transition between MOFs and metal oxyhydroxide poses a great challenge in identifying authentic active sites and long-term stability. Herein, we employ on-purpose defect engineering to create high-density atomic level defects on two-dimensional Fe-MOFs. The coordination number of Fe changes from 6 to 4.46, and over 28% of unsaturated Fe sites are formed in the optimized Fe-MOF. In situ characterizations of the most optimized Fe-MOF0.3 electrocatalyst during the oxygen evolution reaction (OER) process using Fourier transform infrared and Raman spectroscopy have revealed that some Fe unsaturated sites become oxidized with a concomitant dissociation of water molecules, causing generation of the crucial *OH intermediates and Fe oxyhydroxide. Moreover, the presence of Fe oxyhydroxide is compatible with the Volmer and Heyrovsky steps during the hydrogen evolution reaction (HER) process, which lower its energy barrier and accelerate the kinetics. As a result, the optimized Fe-MOF electrodes delivered remarkable OER (259 mV at 10 mA cm-2) and HER (36 mV at 10 mA cm-2) performance. Our study offers comprehensive understanding of the effect of phase transformation on the electrocatalytic process of MOF-based materials.

  • Název v anglickém jazyce

    High-Density Atomic Level Defect Engineering of 2D Fe-Based Metal-Organic Frameworks Boosts Oxygen and Hydrogen Evolution Reactions

  • Popis výsledku anglicky

    Electrocatalysts based on metal-organic frameworks (MOFs) attracted significant attention for water splitting, while the transition between MOFs and metal oxyhydroxide poses a great challenge in identifying authentic active sites and long-term stability. Herein, we employ on-purpose defect engineering to create high-density atomic level defects on two-dimensional Fe-MOFs. The coordination number of Fe changes from 6 to 4.46, and over 28% of unsaturated Fe sites are formed in the optimized Fe-MOF. In situ characterizations of the most optimized Fe-MOF0.3 electrocatalyst during the oxygen evolution reaction (OER) process using Fourier transform infrared and Raman spectroscopy have revealed that some Fe unsaturated sites become oxidized with a concomitant dissociation of water molecules, causing generation of the crucial *OH intermediates and Fe oxyhydroxide. Moreover, the presence of Fe oxyhydroxide is compatible with the Volmer and Heyrovsky steps during the hydrogen evolution reaction (HER) process, which lower its energy barrier and accelerate the kinetics. As a result, the optimized Fe-MOF electrodes delivered remarkable OER (259 mV at 10 mA cm-2) and HER (36 mV at 10 mA cm-2) performance. Our study offers comprehensive understanding of the effect of phase transformation on the electrocatalytic process of MOF-based materials.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10400 - Chemical sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Advanced Science

  • ISSN

    2198-3844

  • e-ISSN

    2198-3844

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    47

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

  • Kód UT WoS článku

    001344924400001

  • EID výsledku v databázi Scopus

    2-s2.0-85207458112