Impact of Sample Dimensionality on Orthogonality Metrics in Comprehensive Two-Dimensional Separations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15110%2F19%3A73593749" target="_blank" >RIV/61989592:15110/19:73593749 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0003267019302910" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0003267019302910</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aca.2019.03.018" target="_blank" >10.1016/j.aca.2019.03.018</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Impact of Sample Dimensionality on Orthogonality Metrics in Comprehensive Two-Dimensional Separations
Popis výsledku v původním jazyce
Orthogonality is a key parameter in the evaluation of the performance of a 2D chromatography-based separation system. Two different perspectives on orthogonality are determined: the extent of the separation space utilized (global orthogonality) and the uniformity of the coverage of the separation space (local orthogonality). This work aims to elucidate the impact of sample dimensionality (the number of separation processes involved) on orthogonality evaluation through the use of descriptors from seven different algorithms utilizing mutually different properties of a chromatogram: Pearson correlation, conditional entropy, asterisk equations, convex hull, arithmetic mean (AN) and harmonic mean of the nearest neighbor, and geometric surface coverage (SC). Artificial chromatograms generated in silico and real GC × GC separations of diesel, plasma, and urine were used for the evaluation of orthogonality. The sample dimensionality has a deep effect on the orthogonality results of all approaches. The SC algorithm emerged as the best descriptor of local orthogonality samples of both low and high dimensionality, the AN algorithm on the global orthogonality of low-dimensionality samples. However, in the case of samples of high dimensionality, AN consistently indicated just the exploitation of the whole separation space; therefore, only local orthogonality is optimized by means of SC. Since no approach was able to monitor both global and local orthogonality as a single value, a new descriptor, ASCA, was developed. It combines the best global (AN) and local (SC) orthogonality algorithms by averaging, giving the same importance to data spread and crowding. ASCA thus provides the best estimation of orthogonality.
Název v anglickém jazyce
Impact of Sample Dimensionality on Orthogonality Metrics in Comprehensive Two-Dimensional Separations
Popis výsledku anglicky
Orthogonality is a key parameter in the evaluation of the performance of a 2D chromatography-based separation system. Two different perspectives on orthogonality are determined: the extent of the separation space utilized (global orthogonality) and the uniformity of the coverage of the separation space (local orthogonality). This work aims to elucidate the impact of sample dimensionality (the number of separation processes involved) on orthogonality evaluation through the use of descriptors from seven different algorithms utilizing mutually different properties of a chromatogram: Pearson correlation, conditional entropy, asterisk equations, convex hull, arithmetic mean (AN) and harmonic mean of the nearest neighbor, and geometric surface coverage (SC). Artificial chromatograms generated in silico and real GC × GC separations of diesel, plasma, and urine were used for the evaluation of orthogonality. The sample dimensionality has a deep effect on the orthogonality results of all approaches. The SC algorithm emerged as the best descriptor of local orthogonality samples of both low and high dimensionality, the AN algorithm on the global orthogonality of low-dimensionality samples. However, in the case of samples of high dimensionality, AN consistently indicated just the exploitation of the whole separation space; therefore, only local orthogonality is optimized by means of SC. Since no approach was able to monitor both global and local orthogonality as a single value, a new descriptor, ASCA, was developed. It combines the best global (AN) and local (SC) orthogonality algorithms by averaging, giving the same importance to data spread and crowding. ASCA thus provides the best estimation of orthogonality.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10406 - Analytical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ANALYTICA CHIMICA ACTA
ISSN
0003-2670
e-ISSN
—
Svazek periodika
2019
Číslo periodika v rámci svazku
1064
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
138-149
Kód UT WoS článku
000464123500014
EID výsledku v databázi Scopus
2-s2.0-85062949310