Building Cendana: a Treebank for Informal Indonesian
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15210%2F19%3A73596472" target="_blank" >RIV/61989592:15210/19:73596472 - isvavai.cz</a>
Výsledek na webu
<a href="https://obd.upol.cz/id_publ/333176358" target="_blank" >https://obd.upol.cz/id_publ/333176358</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Building Cendana: a Treebank for Informal Indonesian
Popis výsledku v původním jazyce
This paper introduces Cendana, a treebank for informal Indonesian. The corpus is from a subset of online chat data between customer service staff and customers at Traveloka (traveloka.com), an online travel agency (OTA) from Indonesia that provides airline ticketing and hotel booking services. Lines of conversation text are parsed using the Indonesian Resource Grammar (INDRA) (Moeljadi et al., 2015), a computational grammar for Indonesian in the Head-Driven Phrase Structure Grammar (HPSG) framework (Pollard and Sag, 1994; Sag et al., 2003) and Minimal Recursion Semantics (MRS) (Copestake et al., 2005). The annotation was done using Full Forest TreeBanker (FFTB) (Packard, 2015). Our purpose is to create a treebank, as well as to develop INDRA for informal Indonesian. Testing on 2,000 lexically dense sentences, the coverage is 64.1% and 715 items or 35.8% was treebanked, with correct syntactic parses and semantics. INDRA has been developed by adding 6,741 new lexical items and 22 new rules, especially the ones for informal Indonesian. The treebank data was employed to build a Feature Forest-based Maximum Entropy Model Trainer. Testing against the annotated data, the precision was around 90%. Moreover, we leveraged the treebank data to develop a POS tagger and present benchmark results evaluating the same.
Název v anglickém jazyce
Building Cendana: a Treebank for Informal Indonesian
Popis výsledku anglicky
This paper introduces Cendana, a treebank for informal Indonesian. The corpus is from a subset of online chat data between customer service staff and customers at Traveloka (traveloka.com), an online travel agency (OTA) from Indonesia that provides airline ticketing and hotel booking services. Lines of conversation text are parsed using the Indonesian Resource Grammar (INDRA) (Moeljadi et al., 2015), a computational grammar for Indonesian in the Head-Driven Phrase Structure Grammar (HPSG) framework (Pollard and Sag, 1994; Sag et al., 2003) and Minimal Recursion Semantics (MRS) (Copestake et al., 2005). The annotation was done using Full Forest TreeBanker (FFTB) (Packard, 2015). Our purpose is to create a treebank, as well as to develop INDRA for informal Indonesian. Testing on 2,000 lexically dense sentences, the coverage is 64.1% and 715 items or 35.8% was treebanked, with correct syntactic parses and semantics. INDRA has been developed by adding 6,741 new lexical items and 22 new rules, especially the ones for informal Indonesian. The treebank data was employed to build a Feature Forest-based Maximum Entropy Model Trainer. Testing against the annotated data, the precision was around 90%. Moreover, we leveraged the treebank data to develop a POS tagger and present benchmark results evaluating the same.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
60202 - Specific languages
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 33rd Pacific Asia Conference on Language, Information and Computation
ISBN
—
ISSN
2619-7782
e-ISSN
—
Počet stran výsledku
9
Strana od-do
"156–164"
Název nakladatele
Waseda Institute for the Study of Language and Information
Místo vydání
Tokyo
Místo konání akce
Hokodate
Datum konání akce
13. 9. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—