Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Mathematics Embodied: Merleau-Ponty on Geometry and Algebra as Fields of Motor Enaction

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15210%2F22%3A73608585" target="_blank" >RIV/61989592:15210/22:73608585 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/content/pdf/10.1007/s11229-022-03526-z.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007/s11229-022-03526-z.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11229-022-03526-z" target="_blank" >10.1007/s11229-022-03526-z</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Mathematics Embodied: Merleau-Ponty on Geometry and Algebra as Fields of Motor Enaction

  • Popis výsledku v původním jazyce

    This paper aims to clarify Merleau-Ponty’s contribution to an embodied-enactive account of mathematical cognition. I first identify the main points of interest in the current discussions of embodied higher cognition and explain how they relate to Merleau-Ponty and his sources, in particular Husserl’s late works. Subsequently, I explain these convergences in greater detail by more specifically discussing the domains of geometry and algebra and by clarifying the role of gestalt psychology in Merleau-Ponty’s account. Beyond that, I explain how, for Merleau-Ponty, mathematical cognition requires not only the presence and actual manipulation of some concrete perceptible symbols but, more strongly, how it is fundamentally linked to the structural transformation of the concrete configurations of symbolic systems to which these symbols appertain. Furthermore, I fill a gap in the literature by explaining Merleau-Ponty’s claim that these structural transformations are operated through motor intentionality. This makes it possible, in turn, to contrast Merleau-Ponty’s approach to ontologically idealistic and realistic views on mathematical objects. On Merleau-Ponty’s account, mathematical objects are relational entities, that is, gestalts that necessarily imply situated cognizers to whom they afford a specific type of engagement in the world and on whom they depend in their eventual structural transformations. I argue that, by attributing a strongly constitutive role to phenomenal configurations and their motor transformation in mathematical thinking, Merleau-Ponty contributes to clarifying the worldly, historical, and socio-cultural aspects of mathematical truths without compromising what we perceive as their universality, certainty, and necessity.

  • Název v anglickém jazyce

    Mathematics Embodied: Merleau-Ponty on Geometry and Algebra as Fields of Motor Enaction

  • Popis výsledku anglicky

    This paper aims to clarify Merleau-Ponty’s contribution to an embodied-enactive account of mathematical cognition. I first identify the main points of interest in the current discussions of embodied higher cognition and explain how they relate to Merleau-Ponty and his sources, in particular Husserl’s late works. Subsequently, I explain these convergences in greater detail by more specifically discussing the domains of geometry and algebra and by clarifying the role of gestalt psychology in Merleau-Ponty’s account. Beyond that, I explain how, for Merleau-Ponty, mathematical cognition requires not only the presence and actual manipulation of some concrete perceptible symbols but, more strongly, how it is fundamentally linked to the structural transformation of the concrete configurations of symbolic systems to which these symbols appertain. Furthermore, I fill a gap in the literature by explaining Merleau-Ponty’s claim that these structural transformations are operated through motor intentionality. This makes it possible, in turn, to contrast Merleau-Ponty’s approach to ontologically idealistic and realistic views on mathematical objects. On Merleau-Ponty’s account, mathematical objects are relational entities, that is, gestalts that necessarily imply situated cognizers to whom they afford a specific type of engagement in the world and on whom they depend in their eventual structural transformations. I argue that, by attributing a strongly constitutive role to phenomenal configurations and their motor transformation in mathematical thinking, Merleau-Ponty contributes to clarifying the worldly, historical, and socio-cultural aspects of mathematical truths without compromising what we perceive as their universality, certainty, and necessity.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    60301 - Philosophy, History and Philosophy of science and technology

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    SYNTHESE

  • ISSN

    0039-7857

  • e-ISSN

    1573-0964

  • Svazek periodika

    200

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    28

  • Strana od-do

    1-28

  • Kód UT WoS článku

    000760246100004

  • EID výsledku v databázi Scopus

    2-s2.0-85125468075