Mathematics Embodied: Merleau-Ponty on Geometry and Algebra as Fields of Motor Enaction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15210%2F22%3A73608585" target="_blank" >RIV/61989592:15210/22:73608585 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/content/pdf/10.1007/s11229-022-03526-z.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007/s11229-022-03526-z.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11229-022-03526-z" target="_blank" >10.1007/s11229-022-03526-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mathematics Embodied: Merleau-Ponty on Geometry and Algebra as Fields of Motor Enaction
Popis výsledku v původním jazyce
This paper aims to clarify Merleau-Ponty’s contribution to an embodied-enactive account of mathematical cognition. I first identify the main points of interest in the current discussions of embodied higher cognition and explain how they relate to Merleau-Ponty and his sources, in particular Husserl’s late works. Subsequently, I explain these convergences in greater detail by more specifically discussing the domains of geometry and algebra and by clarifying the role of gestalt psychology in Merleau-Ponty’s account. Beyond that, I explain how, for Merleau-Ponty, mathematical cognition requires not only the presence and actual manipulation of some concrete perceptible symbols but, more strongly, how it is fundamentally linked to the structural transformation of the concrete configurations of symbolic systems to which these symbols appertain. Furthermore, I fill a gap in the literature by explaining Merleau-Ponty’s claim that these structural transformations are operated through motor intentionality. This makes it possible, in turn, to contrast Merleau-Ponty’s approach to ontologically idealistic and realistic views on mathematical objects. On Merleau-Ponty’s account, mathematical objects are relational entities, that is, gestalts that necessarily imply situated cognizers to whom they afford a specific type of engagement in the world and on whom they depend in their eventual structural transformations. I argue that, by attributing a strongly constitutive role to phenomenal configurations and their motor transformation in mathematical thinking, Merleau-Ponty contributes to clarifying the worldly, historical, and socio-cultural aspects of mathematical truths without compromising what we perceive as their universality, certainty, and necessity.
Název v anglickém jazyce
Mathematics Embodied: Merleau-Ponty on Geometry and Algebra as Fields of Motor Enaction
Popis výsledku anglicky
This paper aims to clarify Merleau-Ponty’s contribution to an embodied-enactive account of mathematical cognition. I first identify the main points of interest in the current discussions of embodied higher cognition and explain how they relate to Merleau-Ponty and his sources, in particular Husserl’s late works. Subsequently, I explain these convergences in greater detail by more specifically discussing the domains of geometry and algebra and by clarifying the role of gestalt psychology in Merleau-Ponty’s account. Beyond that, I explain how, for Merleau-Ponty, mathematical cognition requires not only the presence and actual manipulation of some concrete perceptible symbols but, more strongly, how it is fundamentally linked to the structural transformation of the concrete configurations of symbolic systems to which these symbols appertain. Furthermore, I fill a gap in the literature by explaining Merleau-Ponty’s claim that these structural transformations are operated through motor intentionality. This makes it possible, in turn, to contrast Merleau-Ponty’s approach to ontologically idealistic and realistic views on mathematical objects. On Merleau-Ponty’s account, mathematical objects are relational entities, that is, gestalts that necessarily imply situated cognizers to whom they afford a specific type of engagement in the world and on whom they depend in their eventual structural transformations. I argue that, by attributing a strongly constitutive role to phenomenal configurations and their motor transformation in mathematical thinking, Merleau-Ponty contributes to clarifying the worldly, historical, and socio-cultural aspects of mathematical truths without compromising what we perceive as their universality, certainty, and necessity.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
60301 - Philosophy, History and Philosophy of science and technology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SYNTHESE
ISSN
0039-7857
e-ISSN
1573-0964
Svazek periodika
200
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
28
Strana od-do
1-28
Kód UT WoS článku
000760246100004
EID výsledku v databázi Scopus
2-s2.0-85125468075