Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Fuzzy konceptuální svazy omezené zdůrazňovači

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F07%3A00003613" target="_blank" >RIV/61989592:15310/07:00003613 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Fuzzy concept lattices constrained by hedges

  • Popis výsledku v původním jazyce

    We study concept lattices constrained by hedges. The principal aim is to control, in a parameterical way, the size of concept lattices, i.e. the number of conceptual clusters extracted from data. The paper presents theoretical insight, comments, and examples. We introduce new, parameterized, concept-forming operators and study their properties. We obtain an axiomatic characterization of the concept-forming operators. Then, we show that a concept lattice with hedges is indeed a complete lattice which isisomorphic to an ordinary concept lattice. We describe the isomorphism and its inverse. These mappings serve as translation procedures. As a consequence, we obtain a theorem characterizing the structure of concept lattices with hedges which generalizes the well-known main theorem of ordinary concept lattices. Furthermore, the isomorphism and its inverse enable us to compute a concept lattice with hedges using algorithms for ordinary concept lattices. Further insight is provided for bound

  • Název v anglickém jazyce

    Fuzzy concept lattices constrained by hedges

  • Popis výsledku anglicky

    We study concept lattices constrained by hedges. The principal aim is to control, in a parameterical way, the size of concept lattices, i.e. the number of conceptual clusters extracted from data. The paper presents theoretical insight, comments, and examples. We introduce new, parameterized, concept-forming operators and study their properties. We obtain an axiomatic characterization of the concept-forming operators. Then, we show that a concept lattice with hedges is indeed a complete lattice which isisomorphic to an ordinary concept lattice. We describe the isomorphism and its inverse. These mappings serve as translation procedures. As a consequence, we obtain a theorem characterizing the structure of concept lattices with hedges which generalizes the well-known main theorem of ordinary concept lattices. Furthermore, the isomorphism and its inverse enable us to compute a concept lattice with hedges using algorithms for ordinary concept lattices. Further insight is provided for bound

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BD - Teorie informace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2007

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Advanced Computational Intelligence

  • ISSN

    1343-0130

  • e-ISSN

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    JP - Japonsko

  • Počet stran výsledku

    10

  • Strana od-do

    536-545

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus