Asymptotická analýza elastických křivých struktur
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F07%3A00004773" target="_blank" >RIV/61989592:15310/07:00004773 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Asymptotic analysis of elastic curved rods
Popis výsledku v původním jazyce
We consider a sequence of curved rods which consist of isotropic material and which are clamped on the lower base or on both bases. We study the asymptotic behaviour of the stress tensor and displacement under the assumptions of linearized elasticity when the cross-sectional diameter of the rods tends to zero and the body force is given in the particular form. The analysis covers the case of a nonsmooth limit line of centroids. We show how the body force and the choice of the approximating curved rods can affect the strong convergence and the limit form of the stress tensor.
Název v anglickém jazyce
Asymptotic analysis of elastic curved rods
Popis výsledku anglicky
We consider a sequence of curved rods which consist of isotropic material and which are clamped on the lower base or on both bases. We study the asymptotic behaviour of the stress tensor and displacement under the assumptions of linearized elasticity when the cross-sectional diameter of the rods tends to zero and the body force is given in the particular form. The analysis covers the case of a nonsmooth limit line of centroids. We show how the body force and the choice of the approximating curved rods can affect the strong convergence and the limit form of the stress tensor.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2007
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematical Methods in the Applied Sciences
ISSN
0170-4214
e-ISSN
—
Svazek periodika
29
Číslo periodika v rámci svazku
30
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
33
Strana od-do
43-75
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—