Map Similarity Testing Using Matrix Decomposition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F09%3A00010661" target="_blank" >RIV/61989592:15310/09:00010661 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Map Similarity Testing Using Matrix Decomposition
Popis výsledku v původním jazyce
Complicated systems such as geographic information systems (GIS) require sophisticated reasoning mechanisms for dealing with spatial information maintained by techniques in database management systems. However, their usage is limited, especially for thesystems where data are very dynamic and need intelligent decision making support in the presence of some uncertainty. In last years, many geoscientific researchers have begun to examine non-parametric techniques that may explain and model environmental data (Bradshaw et al. 1999; Chon et al. 1996; Ozesmi and Ozesmi 1999). It has been suggested that neural networks and case-based reasoning may provide appropriate techniques for ecological modelling (Bradshaw et al. 1999; Holt and Benwell 1999). Due to the inherent spatial nature of geographical data, it seems reasonable that such modelling be done within a GIS. In the last ten years there has been a significant increase in the application of artificial intelligence (AI) to many practical
Název v anglickém jazyce
Map Similarity Testing Using Matrix Decomposition
Popis výsledku anglicky
Complicated systems such as geographic information systems (GIS) require sophisticated reasoning mechanisms for dealing with spatial information maintained by techniques in database management systems. However, their usage is limited, especially for thesystems where data are very dynamic and need intelligent decision making support in the presence of some uncertainty. In last years, many geoscientific researchers have begun to examine non-parametric techniques that may explain and model environmental data (Bradshaw et al. 1999; Chon et al. 1996; Ozesmi and Ozesmi 1999). It has been suggested that neural networks and case-based reasoning may provide appropriate techniques for ecological modelling (Bradshaw et al. 1999; Holt and Benwell 1999). Due to the inherent spatial nature of geographical data, it seems reasonable that such modelling be done within a GIS. In the last ten years there has been a significant increase in the application of artificial intelligence (AI) to many practical
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
DE - Zemský magnetismus, geodesie, geografie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA205%2F09%2F1079" target="_blank" >GA205/09/1079: Metody umělé inteligence v GIS</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
International Conference on Intelligent Networking and Collaborative Systems INCoS 2009
ISBN
978-0-7695-3858-7
ISSN
—
e-ISSN
—
Počet stran výsledku
421
Strana od-do
—
Název nakladatele
IEEE Computer Society Press
Místo vydání
New York
Místo konání akce
—
Datum konání akce
—
Typ akce podle státní příslušnosti
—
Kód UT WoS článku
—