The bivariate statistical analysis of environmental (compositional) data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F10%3A10212157" target="_blank" >RIV/61989592:15310/10:10212157 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The bivariate statistical analysis of environmental (compositional) data
Popis výsledku v původním jazyce
Environmental sciences usually deal with compositional (closed) data. Whenever the concentration of chemical elements is measured, the data will be closed, i.e. the relevant information is contained in the ratios between the variables rather than in thedata values reported for the variables. Data closure has severe consequences for statistical data analysis. Most classical statistical methods are based on the usual Euclidean geometry - compositional data, however, do not plot into Euclidean space because they have their own geometry which is not linear but curved in the Euclidean sense. This has severe consequences for bivariate statistical analysis: correlation coefficients computed in the traditional way are likely to be misleading, and the information contained in scatterplots must be used and interpreted differently from sets of non-compositional data. As a solution, the ilr transformation applied to a variable pair can be used to display the relationship and to compute a measure
Název v anglickém jazyce
The bivariate statistical analysis of environmental (compositional) data
Popis výsledku anglicky
Environmental sciences usually deal with compositional (closed) data. Whenever the concentration of chemical elements is measured, the data will be closed, i.e. the relevant information is contained in the ratios between the variables rather than in thedata values reported for the variables. Data closure has severe consequences for statistical data analysis. Most classical statistical methods are based on the usual Euclidean geometry - compositional data, however, do not plot into Euclidean space because they have their own geometry which is not linear but curved in the Euclidean sense. This has severe consequences for bivariate statistical analysis: correlation coefficients computed in the traditional way are likely to be misleading, and the information contained in scatterplots must be used and interpreted differently from sets of non-compositional data. As a solution, the ilr transformation applied to a variable pair can be used to display the relationship and to compute a measure
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Science of the total environment
ISSN
0048-9697
e-ISSN
—
Svazek periodika
408
Číslo periodika v rámci svazku
19
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
9
Strana od-do
—
Kód UT WoS článku
000280917300031
EID výsledku v databázi Scopus
—