Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Interior and closure operators on commutative bounded residuated lattices

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F13%3A33146210" target="_blank" >RIV/61989592:15310/13:33146210 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Interior and closure operators on commutative bounded residuated lattices

  • Popis výsledku v původním jazyce

    Commutative bounded integral lattices form a large class of algebras containing some classes of algebras behind many valued and fuzzy logics. In the paper we introduce and investigate additive closure and multiplicative interior operators on this class of algebras.

  • Název v anglickém jazyce

    Interior and closure operators on commutative bounded residuated lattices

  • Popis výsledku anglicky

    Commutative bounded integral lattices form a large class of algebras containing some classes of algebras behind many valued and fuzzy logics. In the paper we introduce and investigate additive closure and multiplicative interior operators on this class of algebras.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2013

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Acta Universitatis Palackianae Olomucensis, Facultas Rerum Naturalium, Mathematica

  • ISSN

    0231-9721

  • e-ISSN

  • Svazek periodika

    52

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    14

  • Strana od-do

    121-134

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus