Fundamental PDE's of the canonical almost geodesic mappings of type $tilde{pi}sb 1$
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F14%3A33151211" target="_blank" >RIV/61989592:15310/14:33151211 - isvavai.cz</a>
Výsledek na webu
<a href="http://math.usm.my/bulletin/pdf/v37n3/v37n3p4.pdf" target="_blank" >http://math.usm.my/bulletin/pdf/v37n3/v37n3p4.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fundamental PDE's of the canonical almost geodesic mappings of type $tilde{pi}sb 1$
Popis výsledku v původním jazyce
For modelling of various physical processes, geodesic lines and almost geodesic curves serve as a useful tool. Trasformations or mappings between spaces (endowed with the metric or connection) which preserve such curves play an important role in physics,particularly in mechanics, and in geometry as well. Our aim is to continue investigations concerning existence of almost geodesic mappings of manifolds with linear (affine) connection, particularly of the so-called p?1 mappings, i.e. canonical almost geodesic mappings of type p1 according to Sinyukov. First we give necessary and sufficient conditions for existence of p1 mappings of a manifold endowed with a linear connection onto pseudo-Riemannian manifolds. The conditions take the form of a closed system of PDE's of first order of Cauchy type. Further we deduce necessary and sufficient conditions for existence of p1 mappings onto generalized Ricci-symmetric spaces. Our results are generalizations of some previous theorems obtained by
Název v anglickém jazyce
Fundamental PDE's of the canonical almost geodesic mappings of type $tilde{pi}sb 1$
Popis výsledku anglicky
For modelling of various physical processes, geodesic lines and almost geodesic curves serve as a useful tool. Trasformations or mappings between spaces (endowed with the metric or connection) which preserve such curves play an important role in physics,particularly in mechanics, and in geometry as well. Our aim is to continue investigations concerning existence of almost geodesic mappings of manifolds with linear (affine) connection, particularly of the so-called p?1 mappings, i.e. canonical almost geodesic mappings of type p1 according to Sinyukov. First we give necessary and sufficient conditions for existence of p1 mappings of a manifold endowed with a linear connection onto pseudo-Riemannian manifolds. The conditions take the form of a closed system of PDE's of first order of Cauchy type. Further we deduce necessary and sufficient conditions for existence of p1 mappings onto generalized Ricci-symmetric spaces. Our results are generalizations of some previous theorems obtained by
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Bulletin of the Malaysian Mathematical Sciences Society
ISSN
0126-6705
e-ISSN
—
Svazek periodika
37
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
MY - Malajsie
Počet stran výsledku
13
Strana od-do
647-659
Kód UT WoS článku
000339225300004
EID výsledku v databázi Scopus
—