Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F15%3A33154688" target="_blank" >RIV/61989592:15310/15:33154688 - isvavai.cz</a>
Výsledek na webu
<a href="http://pubs.acs.org/doi/full/10.1021/cr500304f" target="_blank" >http://pubs.acs.org/doi/full/10.1021/cr500304f</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/cr500304f" target="_blank" >10.1021/cr500304f</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures
Popis výsledku v původním jazyce
The unique ability of carbon atoms to participate in robust covalent bonds with other carbon atoms in diverse hybridization states (sp, sp2, sp3) or with nonmetallic elements enables them to form a wide range of structures, from small molecules to long chains. This property underpins the immense importance of organic chemistry and biochemistry in life. It was two centuries ago that carbon was first shown to be present in organic molecules and biomolecules as well as natural carbon materials such as thevarious types of amorphous carbon, diamond, and graphite. Although diamond and graphite both consist exclusively of carbon atoms, their properties are very different. Diamond is a transparent electrical insulator and the hardest known material. Conversely, graphite is a black opaque soft material with remarkable electrical conductivity. These differences derive from the way that the carbon atoms are connected in each case. Diamond consists of tetrahedral sp3 carbon atoms that form unique
Název v anglickém jazyce
Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures
Popis výsledku anglicky
The unique ability of carbon atoms to participate in robust covalent bonds with other carbon atoms in diverse hybridization states (sp, sp2, sp3) or with nonmetallic elements enables them to form a wide range of structures, from small molecules to long chains. This property underpins the immense importance of organic chemistry and biochemistry in life. It was two centuries ago that carbon was first shown to be present in organic molecules and biomolecules as well as natural carbon materials such as thevarious types of amorphous carbon, diamond, and graphite. Although diamond and graphite both consist exclusively of carbon atoms, their properties are very different. Diamond is a transparent electrical insulator and the hardest known material. Conversely, graphite is a black opaque soft material with remarkable electrical conductivity. These differences derive from the way that the carbon atoms are connected in each case. Diamond consists of tetrahedral sp3 carbon atoms that form unique
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
CA - Anorganická chemie
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chemical Reviews
ISSN
0009-2665
e-ISSN
—
Svazek periodika
115
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
78
Strana od-do
4744-4822
Kód UT WoS článku
000356316300005
EID výsledku v databázi Scopus
—