Independence in contingency tables using simplicial geometry
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F15%3A33155227" target="_blank" >RIV/61989592:15310/15:33155227 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1080/03610926.2013.824980" target="_blank" >http://dx.doi.org/10.1080/03610926.2013.824980</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/03610926.2013.824980" target="_blank" >10.1080/03610926.2013.824980</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Independence in contingency tables using simplicial geometry
Popis výsledku v původním jazyce
Frequently, contingency tables are generated in a multinomial sampling. Multinomial probabilities are then organized in a table assigning probabilities to each cell. A probability table can be viewed as an element in the simplex. The Aitchison geometry of the simplex identifies independent probability tables as a linear subspace. An important consequence is that, given a probability table, the nearest independent table is obtained by orthogonal projection onto the independent subspace. The nearest independent table is identified as that obtained by the product of geometric marginals, which do not coincide with the standard marginals, except in the independent case. The original probability table is decomposed into orthogonal tables, the independent andthe interaction tables. The underlying model is log-linear, and a procedure to test independence of a contingency table, based on a multinomial simulation, is developed. Its performance is studied on an illustrative example.
Název v anglickém jazyce
Independence in contingency tables using simplicial geometry
Popis výsledku anglicky
Frequently, contingency tables are generated in a multinomial sampling. Multinomial probabilities are then organized in a table assigning probabilities to each cell. A probability table can be viewed as an element in the simplex. The Aitchison geometry of the simplex identifies independent probability tables as a linear subspace. An important consequence is that, given a probability table, the nearest independent table is obtained by orthogonal projection onto the independent subspace. The nearest independent table is identified as that obtained by the product of geometric marginals, which do not coincide with the standard marginals, except in the independent case. The original probability table is decomposed into orthogonal tables, the independent andthe interaction tables. The underlying model is log-linear, and a procedure to test independence of a contingency table, based on a multinomial simulation, is developed. Its performance is studied on an illustrative example.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Communications in Statistics - Theory and Methods
ISSN
0361-0926
e-ISSN
—
Svazek periodika
44
Číslo periodika v rámci svazku
18
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
3978-3996
Kód UT WoS článku
000362340800014
EID výsledku v databázi Scopus
—