Dynamic Order Algebras as an Axiomatization of Modal and Tense Logics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F15%3A33155730" target="_blank" >RIV/61989592:15310/15:33155730 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14310/15:00085221
Výsledek na webu
<a href="http://link.springer.com/article/10.1007%2Fs10773-015-2510-9" target="_blank" >http://link.springer.com/article/10.1007%2Fs10773-015-2510-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10773-015-2510-9" target="_blank" >10.1007/s10773-015-2510-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dynamic Order Algebras as an Axiomatization of Modal and Tense Logics
Popis výsledku v původním jazyce
The aim of the paper is to introduce and describe tense operators in every propositional logic which is axiomatized by means of an algebra whose underlying structure is a bounded poset or even a lattice. We introduce the operators G, H, P and F without regard what propositional connectives the logic includes. For this we use the axiomatization of universal quantifiers as a starting point and we modify these axioms for our reasons. At first, we show that the operators can be recognized as modal operatorsand we study the pairs (P, G) as the so-called dynamic order pairs. Further, we get constructions of these operators in the corresponding algebra provided a time frame is given. Moreover, we solve the problem of finding a time frame in the case when thetense operators are given. In particular, any tense algebra is representable in its Dedekind-MacNeille completion. Our approach is fully general, we do not relay on the logic under consideration and hence it is applicable in all the up t
Název v anglickém jazyce
Dynamic Order Algebras as an Axiomatization of Modal and Tense Logics
Popis výsledku anglicky
The aim of the paper is to introduce and describe tense operators in every propositional logic which is axiomatized by means of an algebra whose underlying structure is a bounded poset or even a lattice. We introduce the operators G, H, P and F without regard what propositional connectives the logic includes. For this we use the axiomatization of universal quantifiers as a starting point and we modify these axioms for our reasons. At first, we show that the operators can be recognized as modal operatorsand we study the pairs (P, G) as the so-called dynamic order pairs. Further, we get constructions of these operators in the corresponding algebra provided a time frame is given. Moreover, we solve the problem of finding a time frame in the case when thetense operators are given. In particular, any tense algebra is representable in its Dedekind-MacNeille completion. Our approach is fully general, we do not relay on the logic under consideration and hence it is applicable in all the up t
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/EE2.3.20.0051" target="_blank" >EE2.3.20.0051: Algebraické metody v kvantové logice</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Theoretical Physics
ISSN
0020-7748
e-ISSN
—
Svazek periodika
54
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
4327-4340
Kód UT WoS článku
000364224200014
EID výsledku v databázi Scopus
—