Tunable multiphonon blockade in coupled nanomechanical resonators
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F16%3A33159784" target="_blank" >RIV/61989592:15310/16:33159784 - isvavai.cz</a>
Výsledek na webu
<a href="http://journals.aps.org/pra/pdf/10.1103/PhysRevA.93.013808" target="_blank" >http://journals.aps.org/pra/pdf/10.1103/PhysRevA.93.013808</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevA.93.013808" target="_blank" >10.1103/PhysRevA.93.013808</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Tunable multiphonon blockade in coupled nanomechanical resonators
Popis výsledku v původním jazyce
A single phonon in a nonlinear nanomechanical resonator (NAMR) can block the excitation of a second phonon [Phys. Rev. A 82, 032101 (2010)]. This intrinsically quantum effect is called phonon blockade, and is an analog of Coulomb blockade and photon blockade. Here we predict tunable multiphonon blockade in coupled nonlinear NAMRs, where nonlinearity is induced by two-level systems (TLSs) assuming dispersive (far off-resonance) interactions. Specifically, we derive an effective Kerr-type interaction in a hybrid system consisting of two nonlinearly interacting NAMRs coupled to two TLSs and driven by classical fields. The interaction between a given NAMR and a TLS is described by a Jaynes-Cummings-like model. We show that by properly tuning the frequency of the driving fields one can induce various types of phonon blockade, corresponding to the entangled phonon states of either two qubits, a qutrit and quartit, or two qudits. Thus, a k-phonon Fock state (with k = 1,2,3) can impede the excitation of more phonons in a given NAMR, which we interpret as a k-phonon blockade (or, equivalently, phonon tunneling). Our results can be explained in terms of resonant transitions in the Fock space and via phase-space interference using the s-parametrized Cahill-Glauber quasiprobability distributions including the Wigner function. We study the nonclassicality, entanglement, and dimensionality of the blockaded phonon states during both dynamics and in the stationary limits.
Název v anglickém jazyce
Tunable multiphonon blockade in coupled nanomechanical resonators
Popis výsledku anglicky
A single phonon in a nonlinear nanomechanical resonator (NAMR) can block the excitation of a second phonon [Phys. Rev. A 82, 032101 (2010)]. This intrinsically quantum effect is called phonon blockade, and is an analog of Coulomb blockade and photon blockade. Here we predict tunable multiphonon blockade in coupled nonlinear NAMRs, where nonlinearity is induced by two-level systems (TLSs) assuming dispersive (far off-resonance) interactions. Specifically, we derive an effective Kerr-type interaction in a hybrid system consisting of two nonlinearly interacting NAMRs coupled to two TLSs and driven by classical fields. The interaction between a given NAMR and a TLS is described by a Jaynes-Cummings-like model. We show that by properly tuning the frequency of the driving fields one can induce various types of phonon blockade, corresponding to the entangled phonon states of either two qubits, a qutrit and quartit, or two qudits. Thus, a k-phonon Fock state (with k = 1,2,3) can impede the excitation of more phonons in a given NAMR, which we interpret as a k-phonon blockade (or, equivalently, phonon tunneling). Our results can be explained in terms of resonant transitions in the Fock space and via phase-space interference using the s-parametrized Cahill-Glauber quasiprobability distributions including the Wigner function. We study the nonclassicality, entanglement, and dimensionality of the blockaded phonon states during both dynamics and in the stationary limits.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BH - Optika, masery a lasery
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review A
ISSN
2469-9926
e-ISSN
—
Svazek periodika
93
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
"013808-1"-"013808-14"
Kód UT WoS článku
000367659500009
EID výsledku v databázi Scopus
—