Fast universal performance certification of measurement schemes for quantum tomography
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F16%3A33159811" target="_blank" >RIV/61989592:15310/16:33159811 - isvavai.cz</a>
Výsledek na webu
<a href="http://journals.aps.org/pra/pdf/10.1103/PhysRevA.94.022113" target="_blank" >http://journals.aps.org/pra/pdf/10.1103/PhysRevA.94.022113</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevA.94.022113" target="_blank" >10.1103/PhysRevA.94.022113</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fast universal performance certification of measurement schemes for quantum tomography
Popis výsledku v původním jazyce
Prior to a measurement in a quantum-state tomography experiment, it is important to evaluate the performance of this measurement with respect to the average accuracy in state estimation. We propose a fast and reliable numerical certification of measurement performance that is applicable to any known quantum measurement. This numerical method is based on the statistical theory of unbiased estimation that is valid for any physically accessible quantum state that is necessarily full rank in the limit of a large number of measurement copies, and the Hoeffding inequality that applies to bounded statistical quantities in the quantum state space. We present the use of this straightforward certification procedure by illustrating the convergence to optimal pure-state tomography with an increasing number of overcomplete measurement outcomes. Furthermore, we demonstrate that the performances of symmetric informationally complete measurements and mutually unbiased bases, which are commonly regarded as optimal measurements, can be easily beaten in tomographic performance with randomly generated measurements that are only slightly more informationally overcomplete. Two important classes of random measurements are also discussed with the help of our numerical machinery.
Název v anglickém jazyce
Fast universal performance certification of measurement schemes for quantum tomography
Popis výsledku anglicky
Prior to a measurement in a quantum-state tomography experiment, it is important to evaluate the performance of this measurement with respect to the average accuracy in state estimation. We propose a fast and reliable numerical certification of measurement performance that is applicable to any known quantum measurement. This numerical method is based on the statistical theory of unbiased estimation that is valid for any physically accessible quantum state that is necessarily full rank in the limit of a large number of measurement copies, and the Hoeffding inequality that applies to bounded statistical quantities in the quantum state space. We present the use of this straightforward certification procedure by illustrating the convergence to optimal pure-state tomography with an increasing number of overcomplete measurement outcomes. Furthermore, we demonstrate that the performances of symmetric informationally complete measurements and mutually unbiased bases, which are commonly regarded as optimal measurements, can be easily beaten in tomographic performance with randomly generated measurements that are only slightly more informationally overcomplete. Two important classes of random measurements are also discussed with the help of our numerical machinery.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BH - Optika, masery a lasery
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-03194S" target="_blank" >GA15-03194S: Informačně úplná měření pro zpracování informace prostřednictvím náhodného světla</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review A
ISSN
2469-9926
e-ISSN
—
Svazek periodika
94
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
"022113-1"-"022113-8"
Kód UT WoS článku
000381472900003
EID výsledku v databázi Scopus
—