Generalized Hofmann quantum process fidelity bounds for quantum filters
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F16%3A33159896" target="_blank" >RIV/61989592:15310/16:33159896 - isvavai.cz</a>
Výsledek na webu
<a href="http://journals.aps.org/pra/pdf/10.1103/PhysRevA.93.042316" target="_blank" >http://journals.aps.org/pra/pdf/10.1103/PhysRevA.93.042316</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevA.93.042316" target="_blank" >10.1103/PhysRevA.93.042316</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Generalized Hofmann quantum process fidelity bounds for quantum filters
Popis výsledku v původním jazyce
We propose and investigate bounds on the quantum process fidelity of quantum filters, i.e., probabilistic quantum operations represented by a single Kraus operator K. These bounds generalize the Hofmann bounds on the quantum process fidelity of unitary operations [H. F. Hofmann, Phys. Rev. Lett. 94, 160504 (2005)] and are based on probing the quantum filter with pure states forming two mutually unbiased bases. Determination of these bounds therefore requires far fewer measurements than full quantum process tomography. We find that it is particularly suitable to construct one of the probe bases from the right eigenstates of K, because in this case the bounds are tight in the sense that if the actual filter coincides with the ideal one, then both the lower and the upper bounds are equal to 1. We theoretically investigate the application of these bounds to a two-qubit optical quantum filter formed by the interference of two photons on a partially polarizing beam splitter. For an experimentally convenient choice of factorized input states and measurements we study the tightness of the bounds. We show that more stringent bounds can be obtained by more sophisticated processing of the data using convex optimization and we compare our methods for different choices of the input probe states.
Název v anglickém jazyce
Generalized Hofmann quantum process fidelity bounds for quantum filters
Popis výsledku anglicky
We propose and investigate bounds on the quantum process fidelity of quantum filters, i.e., probabilistic quantum operations represented by a single Kraus operator K. These bounds generalize the Hofmann bounds on the quantum process fidelity of unitary operations [H. F. Hofmann, Phys. Rev. Lett. 94, 160504 (2005)] and are based on probing the quantum filter with pure states forming two mutually unbiased bases. Determination of these bounds therefore requires far fewer measurements than full quantum process tomography. We find that it is particularly suitable to construct one of the probe bases from the right eigenstates of K, because in this case the bounds are tight in the sense that if the actual filter coincides with the ideal one, then both the lower and the upper bounds are equal to 1. We theoretically investigate the application of these bounds to a two-qubit optical quantum filter formed by the interference of two photons on a partially polarizing beam splitter. For an experimentally convenient choice of factorized input states and measurements we study the tightness of the bounds. We show that more stringent bounds can be obtained by more sophisticated processing of the data using convex optimization and we compare our methods for different choices of the input probe states.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BH - Optika, masery a lasery
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review A
ISSN
2469-9926
e-ISSN
—
Svazek periodika
93
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
"042316-1"-"042316-10"
Kód UT WoS článku
000373757100004
EID výsledku v databázi Scopus
—