Influence of Doping and Temperature on Solvatochromic Shifts in Optical Spectra of Carbon Dots
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F16%3A33159997" target="_blank" >RIV/61989592:15310/16:33159997 - isvavai.cz</a>
Výsledek na webu
<a href="http://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.5b12294" target="_blank" >http://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.5b12294</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpcc.5b12294" target="_blank" >10.1021/acs.jpcc.5b12294</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Influence of Doping and Temperature on Solvatochromic Shifts in Optical Spectra of Carbon Dots
Popis výsledku v původním jazyce
Solvatochromic shifts in nitrogen-doped and nitrogen-sulfur-co-doped carbon dots are studied by analyzing absorption, photoluminescence excitation and photoluminescence emission spectra, and their emission lifetimes in two different solvents, protic water (H2O) and aprotic dimethyl sulfoxide (DMSO). We identify three emission bands belonging to the sp(2)-hybridized core, the edge, and the functional surface groups of carbon dots, as well as surface attached fluorophores that emit within the edge band energy range. Edge and surface bands show opposite solvatochromic shifts solely depending on the doping heteroatoms. We are able to reproduce emission shifts observed in DMSO by heating CDs in H2O from 7 to 87 degrees C, when the polarity and hydrogen-bonding strength of the solvent are reduced. Intrinsic edge band transitions are found to be strongly influenced by the solvent polarity, as charge transfer processes dominate. Surface band transitions are found to be influenced especially by hydrogen bonding between the carbon dots and the solvent. Together, these processes lead to characteristic, solvatochromic blue and red shifts of the emission bands. Furthermore, we observe strong emission quenching in the edge band but emission enhancement in the surface band of carbon dots in DMSO. This is attributed to quenched organic fluorophores that are formed during the carbon dot synthesis, leaving only intrinsic edge band emission while the radiative decay in the surface band is enhanced. As a result, the edge band of nitrogen-sulfur-co-doped carbon dots switches from an excitation-independent, fluorophore-like emission to an excitation-dependent emission associated with intrinsic edge states.
Název v anglickém jazyce
Influence of Doping and Temperature on Solvatochromic Shifts in Optical Spectra of Carbon Dots
Popis výsledku anglicky
Solvatochromic shifts in nitrogen-doped and nitrogen-sulfur-co-doped carbon dots are studied by analyzing absorption, photoluminescence excitation and photoluminescence emission spectra, and their emission lifetimes in two different solvents, protic water (H2O) and aprotic dimethyl sulfoxide (DMSO). We identify three emission bands belonging to the sp(2)-hybridized core, the edge, and the functional surface groups of carbon dots, as well as surface attached fluorophores that emit within the edge band energy range. Edge and surface bands show opposite solvatochromic shifts solely depending on the doping heteroatoms. We are able to reproduce emission shifts observed in DMSO by heating CDs in H2O from 7 to 87 degrees C, when the polarity and hydrogen-bonding strength of the solvent are reduced. Intrinsic edge band transitions are found to be strongly influenced by the solvent polarity, as charge transfer processes dominate. Surface band transitions are found to be influenced especially by hydrogen bonding between the carbon dots and the solvent. Together, these processes lead to characteristic, solvatochromic blue and red shifts of the emission bands. Furthermore, we observe strong emission quenching in the edge band but emission enhancement in the surface band of carbon dots in DMSO. This is attributed to quenched organic fluorophores that are formed during the carbon dot synthesis, leaving only intrinsic edge band emission while the radiative decay in the surface band is enhanced. As a result, the edge band of nitrogen-sulfur-co-doped carbon dots switches from an excitation-independent, fluorophore-like emission to an excitation-dependent emission associated with intrinsic edge states.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
CF - Fyzikální chemie a teoretická chemie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1305" target="_blank" >LO1305: Rozvoj centra pokročilých technologií a materiálů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physical Chemistry Part C: Nanomaterials and Interfaces
ISSN
1932-7447
e-ISSN
—
Svazek periodika
120
Číslo periodika v rámci svazku
19
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
10591-10604
Kód UT WoS článku
000376417500052
EID výsledku v databázi Scopus
—