Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Influence of Doping and Temperature on Solvatochromic Shifts in Optical Spectra of Carbon Dots

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F16%3A33159997" target="_blank" >RIV/61989592:15310/16:33159997 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.5b12294" target="_blank" >http://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.5b12294</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.jpcc.5b12294" target="_blank" >10.1021/acs.jpcc.5b12294</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Influence of Doping and Temperature on Solvatochromic Shifts in Optical Spectra of Carbon Dots

  • Popis výsledku v původním jazyce

    Solvatochromic shifts in nitrogen-doped and nitrogen-sulfur-co-doped carbon dots are studied by analyzing absorption, photoluminescence excitation and photoluminescence emission spectra, and their emission lifetimes in two different solvents, protic water (H2O) and aprotic dimethyl sulfoxide (DMSO). We identify three emission bands belonging to the sp(2)-hybridized core, the edge, and the functional surface groups of carbon dots, as well as surface attached fluorophores that emit within the edge band energy range. Edge and surface bands show opposite solvatochromic shifts solely depending on the doping heteroatoms. We are able to reproduce emission shifts observed in DMSO by heating CDs in H2O from 7 to 87 degrees C, when the polarity and hydrogen-bonding strength of the solvent are reduced. Intrinsic edge band transitions are found to be strongly influenced by the solvent polarity, as charge transfer processes dominate. Surface band transitions are found to be influenced especially by hydrogen bonding between the carbon dots and the solvent. Together, these processes lead to characteristic, solvatochromic blue and red shifts of the emission bands. Furthermore, we observe strong emission quenching in the edge band but emission enhancement in the surface band of carbon dots in DMSO. This is attributed to quenched organic fluorophores that are formed during the carbon dot synthesis, leaving only intrinsic edge band emission while the radiative decay in the surface band is enhanced. As a result, the edge band of nitrogen-sulfur-co-doped carbon dots switches from an excitation-independent, fluorophore-like emission to an excitation-dependent emission associated with intrinsic edge states.

  • Název v anglickém jazyce

    Influence of Doping and Temperature on Solvatochromic Shifts in Optical Spectra of Carbon Dots

  • Popis výsledku anglicky

    Solvatochromic shifts in nitrogen-doped and nitrogen-sulfur-co-doped carbon dots are studied by analyzing absorption, photoluminescence excitation and photoluminescence emission spectra, and their emission lifetimes in two different solvents, protic water (H2O) and aprotic dimethyl sulfoxide (DMSO). We identify three emission bands belonging to the sp(2)-hybridized core, the edge, and the functional surface groups of carbon dots, as well as surface attached fluorophores that emit within the edge band energy range. Edge and surface bands show opposite solvatochromic shifts solely depending on the doping heteroatoms. We are able to reproduce emission shifts observed in DMSO by heating CDs in H2O from 7 to 87 degrees C, when the polarity and hydrogen-bonding strength of the solvent are reduced. Intrinsic edge band transitions are found to be strongly influenced by the solvent polarity, as charge transfer processes dominate. Surface band transitions are found to be influenced especially by hydrogen bonding between the carbon dots and the solvent. Together, these processes lead to characteristic, solvatochromic blue and red shifts of the emission bands. Furthermore, we observe strong emission quenching in the edge band but emission enhancement in the surface band of carbon dots in DMSO. This is attributed to quenched organic fluorophores that are formed during the carbon dot synthesis, leaving only intrinsic edge band emission while the radiative decay in the surface band is enhanced. As a result, the edge band of nitrogen-sulfur-co-doped carbon dots switches from an excitation-independent, fluorophore-like emission to an excitation-dependent emission associated with intrinsic edge states.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    CF - Fyzikální chemie a teoretická chemie

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LO1305" target="_blank" >LO1305: Rozvoj centra pokročilých technologií a materiálů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Physical Chemistry Part C: Nanomaterials and Interfaces

  • ISSN

    1932-7447

  • e-ISSN

  • Svazek periodika

    120

  • Číslo periodika v rámci svazku

    19

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    10591-10604

  • Kód UT WoS článku

    000376417500052

  • EID výsledku v databázi Scopus