Representing quantum structures as near semirings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F16%3A33161672" target="_blank" >RIV/61989592:15310/16:33161672 - isvavai.cz</a>
Výsledek na webu
<a href="https://academic.oup.com/jigpal/article-lookup/doi/10.1093/jigpal/jzw031" target="_blank" >https://academic.oup.com/jigpal/article-lookup/doi/10.1093/jigpal/jzw031</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/jigpal/jzw031" target="_blank" >10.1093/jigpal/jzw031</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Representing quantum structures as near semirings
Popis výsledku v původním jazyce
In this article, we introduce the notion of near semiring with involution. Generalizing the theory of semirings we aim at represent quantum structures, such as basic algebras and orthomodular lattices, in terms of near semirings with involution. In particular, after discussing several properties of near semirings, we introduce the so-called Lukasiewicz near semirings, as a particular case of near semirings, and we show that every basic algebra is representable as (precisely, it is term equivalent to) a near semiring. In the particular case in which a Lukasiewicz near semiring is also a semiring, we obtain as a corollary a representation of MV-algebras as semirings. Analogously, by introducing a particular subclass of Lukasiewicz near semirings, that we termed orthomodular near semirings, we obtain a representation of orthomodular lattices. In the second part of the article, we discuss several universal algebraic properties of Lukasiewicz near semirings and we show that the variety of involutive integral near semirings is a Church variety. This yields a neat equational characterization of central elements of this variety. As a byproduct of such, we obtain several direct decomposition theorems for this class of algebras.
Název v anglickém jazyce
Representing quantum structures as near semirings
Popis výsledku anglicky
In this article, we introduce the notion of near semiring with involution. Generalizing the theory of semirings we aim at represent quantum structures, such as basic algebras and orthomodular lattices, in terms of near semirings with involution. In particular, after discussing several properties of near semirings, we introduce the so-called Lukasiewicz near semirings, as a particular case of near semirings, and we show that every basic algebra is representable as (precisely, it is term equivalent to) a near semiring. In the particular case in which a Lukasiewicz near semiring is also a semiring, we obtain as a corollary a representation of MV-algebras as semirings. Analogously, by introducing a particular subclass of Lukasiewicz near semirings, that we termed orthomodular near semirings, we obtain a representation of orthomodular lattices. In the second part of the article, we discuss several universal algebraic properties of Lukasiewicz near semirings and we show that the variety of involutive integral near semirings is a Church variety. This yields a neat equational characterization of central elements of this variety. As a byproduct of such, we obtain several direct decomposition theorems for this class of algebras.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GF15-34697L" target="_blank" >GF15-34697L: Nové přístupy k reziduovaným posetům</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Logic Journal of Interest Group in Pure and Applied Logics
ISSN
1367-0751
e-ISSN
—
Svazek periodika
24
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
24
Strana od-do
719-742
Kód UT WoS článku
000390303200004
EID výsledku v databázi Scopus
—