Modeling the light-induced electric potential difference (Delta Psi), the pH difference (Delta pH) and the proton motive force across the thylakoid membrane in C-3 leaves
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F17%3A73579564" target="_blank" >RIV/61989592:15310/17:73579564 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0022519316303563" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0022519316303563</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jtbi.2016.10.017" target="_blank" >10.1016/j.jtbi.2016.10.017</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modeling the light-induced electric potential difference (Delta Psi), the pH difference (Delta pH) and the proton motive force across the thylakoid membrane in C-3 leaves
Popis výsledku v původním jazyce
A model was constructed which includes electron transport (linear and cyclic and Mehler type reaction) coupled to proton translocation, counter ion movement, ATP synthesis, and Calvin-Benson cycle. The focus is on modeling of the light-induced total electric potential difference (Delta Psi) which in this model originates from the bulk phase electric potential difference (Delta Psi(b)), the localized electric potential difference (Delta Psi(c)), as well as the surface electric potential difference (Delta Psi(s)). The measured dual wavelength transmittance signal (Delta A515-560 nm, electrochromic shift) was used as a proxy for experimental Delta Psi. The predictions for theoretical Delta Psi vary with assumed contribution of Delta Psi(s), which might imply that the measured Delta A515-560 nm trace on a long time scale reflects the interplay of the Delta Psi components. Simulations also show that partitioning of proton motive force (pmf) to Delta Psi(b) and Delta pH components is sensitive to the stoichiometric ratio of H+/ATP, energy barrier for ATP synthesis, ionic strength, buffer capacity and light intensity. Our model shows that high buffer capacity promotes the establishment of Delta Psi(b), while the formation of pH(i) minimum is not 'dissipated' but 'postponed' until it reaches the same level as that for low buffer capacity. Under physiologically optimal conditions, the output of the model shows that at steady state in light, the Delta pH component is the main contributor to pmf to drive ATP synthesis while a low Delta Psi(b) persists energizing the membrane. Our model predicts 11 mV as the resting electric potential difference across the thylakoid membrane in dark. We suggest that the model presented in this work can be integrated as a module into a more comprehensive model of oxygenic photosynthesis.
Název v anglickém jazyce
Modeling the light-induced electric potential difference (Delta Psi), the pH difference (Delta pH) and the proton motive force across the thylakoid membrane in C-3 leaves
Popis výsledku anglicky
A model was constructed which includes electron transport (linear and cyclic and Mehler type reaction) coupled to proton translocation, counter ion movement, ATP synthesis, and Calvin-Benson cycle. The focus is on modeling of the light-induced total electric potential difference (Delta Psi) which in this model originates from the bulk phase electric potential difference (Delta Psi(b)), the localized electric potential difference (Delta Psi(c)), as well as the surface electric potential difference (Delta Psi(s)). The measured dual wavelength transmittance signal (Delta A515-560 nm, electrochromic shift) was used as a proxy for experimental Delta Psi. The predictions for theoretical Delta Psi vary with assumed contribution of Delta Psi(s), which might imply that the measured Delta A515-560 nm trace on a long time scale reflects the interplay of the Delta Psi components. Simulations also show that partitioning of proton motive force (pmf) to Delta Psi(b) and Delta pH components is sensitive to the stoichiometric ratio of H+/ATP, energy barrier for ATP synthesis, ionic strength, buffer capacity and light intensity. Our model shows that high buffer capacity promotes the establishment of Delta Psi(b), while the formation of pH(i) minimum is not 'dissipated' but 'postponed' until it reaches the same level as that for low buffer capacity. Under physiologically optimal conditions, the output of the model shows that at steady state in light, the Delta pH component is the main contributor to pmf to drive ATP synthesis while a low Delta Psi(b) persists energizing the membrane. Our model predicts 11 mV as the resting electric potential difference across the thylakoid membrane in dark. We suggest that the model presented in this work can be integrated as a module into a more comprehensive model of oxygenic photosynthesis.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10610 - Biophysics
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1204" target="_blank" >LO1204: Udržitelný rozvoj výzkumu v Centru regionu Haná</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Theoretical Biology
ISSN
0022-5193
e-ISSN
—
Svazek periodika
431
Číslo periodika v rámci svazku
JAN
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
11-23
Kód UT WoS článku
000391906400002
EID výsledku v databázi Scopus
—