Vortex topographic microscopy for full-field reference-free imaging and testing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F17%3A73581722" target="_blank" >RIV/61989592:15310/17:73581722 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26620/17:PU124310
Výsledek na webu
<a href="https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-25-18-21428&id=371047" target="_blank" >https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-25-18-21428&id=371047</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1364/OE.25.021428" target="_blank" >10.1364/OE.25.021428</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Vortex topographic microscopy for full-field reference-free imaging and testing
Popis výsledku v původním jazyce
Light vortices carry orbital angular momentum and have a variety of applications in optical manipulation, high-capacity communications or microscopy. Here we propose a new concept of full-field vortex topographic microscopy enabling a reference-free displacement and shape measurement of reflective samples. The sample surface is mapped by an array of light spots enabling quantitative reconstruction of the local depths from defocused wavefronts. Light from the spots is converted to a lattice of mutually uncorrelated doublehelix point spread functions (PSFs) whose angular rotation enables depth estimation. The PSFs are created by self-interference of optical vortices that originate from the same wavefront and are shaped by a spiral phase mask (SPM). The method benefits from the isoplanatic PSFs whose shape and size remain unchanged under defocusing, ensuring high precision in a wide range of measured depths. The technique was tested using a microscope Nikon Eclipse E600 working with a micro-hole plate providing structured illumination and the SPM placed in the imaging path. The depth measurement was demonstrated in the range of 11 mu m exceeding the depth of field of the microscope objective up to 19 times. Throughout this range, the surface depth was mapped with the precision better than 30 nm at the lateral positions given with the precision better than 10 nm. Application potential of the method was demonstrated by profiling the top surface of a bearing ball and reconstructing the threedimensional relief of a reflection phase grating.
Název v anglickém jazyce
Vortex topographic microscopy for full-field reference-free imaging and testing
Popis výsledku anglicky
Light vortices carry orbital angular momentum and have a variety of applications in optical manipulation, high-capacity communications or microscopy. Here we propose a new concept of full-field vortex topographic microscopy enabling a reference-free displacement and shape measurement of reflective samples. The sample surface is mapped by an array of light spots enabling quantitative reconstruction of the local depths from defocused wavefronts. Light from the spots is converted to a lattice of mutually uncorrelated doublehelix point spread functions (PSFs) whose angular rotation enables depth estimation. The PSFs are created by self-interference of optical vortices that originate from the same wavefront and are shaped by a spiral phase mask (SPM). The method benefits from the isoplanatic PSFs whose shape and size remain unchanged under defocusing, ensuring high precision in a wide range of measured depths. The technique was tested using a microscope Nikon Eclipse E600 working with a micro-hole plate providing structured illumination and the SPM placed in the imaging path. The depth measurement was demonstrated in the range of 11 mu m exceeding the depth of field of the microscope objective up to 19 times. Throughout this range, the surface depth was mapped with the precision better than 30 nm at the lateral positions given with the precision better than 10 nm. Application potential of the method was demonstrated by profiling the top surface of a bearing ball and reconstructing the threedimensional relief of a reflection phase grating.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Optics Express
ISSN
1094-4087
e-ISSN
—
Svazek periodika
25
Číslo periodika v rámci svazku
18
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
21428-21443
Kód UT WoS článku
000411529000043
EID výsledku v databázi Scopus
—