Hematite photoanodes for solar water splitting: Directly sputtered vs. anodically oxidized sputtered Fe
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F17%3A73581928" target="_blank" >RIV/61989592:15310/17:73581928 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22310/17:43914898
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0920586116308410?via%3Dihub" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0920586116308410?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cattod.2016.12.022" target="_blank" >10.1016/j.cattod.2016.12.022</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hematite photoanodes for solar water splitting: Directly sputtered vs. anodically oxidized sputtered Fe
Popis výsledku v původním jazyce
Hematite iron oxide has been extensively studied for photoelectrochemical (PEC) water splitting. Nanostructuring of hematite-based photoanodes represents an effective strategy to supress the negative impact of a short diffusion length of photoexcited holes on the PEC performance. Here we present a comparative structural and photoelectrochemical study of hematite photoanodes fabricated in the forms of two-dimensional (2D) very thin (similar to 25 nm) nanocrystaline films and one-dimensional (1D) nanostructures including nanotubes and nanorods. Hematite films on fluorine-doped tin oxide (FTO) coated glass were prepared by two methods (i) by reactive high-power impulse magnetron sputtering (HiPIMS) and (ii) by anodic oxidation of Fe films deposited on FTO by HiPIMS. While in the first case very thin, dense, compact hematite films were deposited, the second approach yielded transparent nanotubular or nanorod hematite nanostructures. In both cases, the photoelectrochemical response was crucially influenced by the post thermal treatment at 750 degrees C resulting in the Sn4+ diffusion from the FTO substrate and the improvement of conductivity across the FTO/Fe2O3 interface. Fe2O3 films exhibit a photocurrent onset at potential 1.1 V (RHE) with almost linear increase of photocurrent with applied potential. The highest photocurrents were obtained for planar thin hematite electrodes prepared directly by HIPIMS technique (0.55 mA cm(-2) at 0.5 V vs. Ag/AgCl). The observed minimal bias for photoelectrochemical water splitting with hematite photoanode was 1.25 V. For applied potential 0.25 V (vs. Ag/AgCl) and bias 1.3 V, the observed photocurrent density and hydrogen production rate was 0.305 mA/cm(2) and 5.8 mu mol/h/cm(2), respectively.
Název v anglickém jazyce
Hematite photoanodes for solar water splitting: Directly sputtered vs. anodically oxidized sputtered Fe
Popis výsledku anglicky
Hematite iron oxide has been extensively studied for photoelectrochemical (PEC) water splitting. Nanostructuring of hematite-based photoanodes represents an effective strategy to supress the negative impact of a short diffusion length of photoexcited holes on the PEC performance. Here we present a comparative structural and photoelectrochemical study of hematite photoanodes fabricated in the forms of two-dimensional (2D) very thin (similar to 25 nm) nanocrystaline films and one-dimensional (1D) nanostructures including nanotubes and nanorods. Hematite films on fluorine-doped tin oxide (FTO) coated glass were prepared by two methods (i) by reactive high-power impulse magnetron sputtering (HiPIMS) and (ii) by anodic oxidation of Fe films deposited on FTO by HiPIMS. While in the first case very thin, dense, compact hematite films were deposited, the second approach yielded transparent nanotubular or nanorod hematite nanostructures. In both cases, the photoelectrochemical response was crucially influenced by the post thermal treatment at 750 degrees C resulting in the Sn4+ diffusion from the FTO substrate and the improvement of conductivity across the FTO/Fe2O3 interface. Fe2O3 films exhibit a photocurrent onset at potential 1.1 V (RHE) with almost linear increase of photocurrent with applied potential. The highest photocurrents were obtained for planar thin hematite electrodes prepared directly by HIPIMS technique (0.55 mA cm(-2) at 0.5 V vs. Ag/AgCl). The observed minimal bias for photoelectrochemical water splitting with hematite photoanode was 1.25 V. For applied potential 0.25 V (vs. Ag/AgCl) and bias 1.3 V, the observed photocurrent density and hydrogen production rate was 0.305 mA/cm(2) and 5.8 mu mol/h/cm(2), respectively.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-19705S" target="_blank" >GA15-19705S: Pokročilé uspořádané nanostruktury, připravené z magnetrony deponovaných kovových slitin, pro fotonické aplikace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Catalysis Today
ISSN
0920-5861
e-ISSN
—
Svazek periodika
287
Číslo periodika v rámci svazku
JUN
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
7
Strana od-do
99-105
Kód UT WoS článku
000399006100016
EID výsledku v databázi Scopus
2-s2.0-85009375041