Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Photoanodes based on TiO2 and alpha-Fe2O3 for solar water splitting - superior role of 1D nanoarchitectures and of combined heterostructures

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F17%3A73583120" target="_blank" >RIV/61989592:15310/17:73583120 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60461373:22310/17:43914980

  • Výsledek na webu

    <a href="http://pubs.rsc.org/en/content/articlehtml/2017/cs/c6cs00015k" target="_blank" >http://pubs.rsc.org/en/content/articlehtml/2017/cs/c6cs00015k</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1039/c6cs00015k" target="_blank" >10.1039/c6cs00015k</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Photoanodes based on TiO2 and alpha-Fe2O3 for solar water splitting - superior role of 1D nanoarchitectures and of combined heterostructures

  • Popis výsledku v původním jazyce

    Solar driven photoelectrochemical water splitting (PEC-WS) using semiconductor photoelectrodes represents a promising approach for a sustainable and environmentally friendly production of renewable energy vectors and fuel sources, such as dihydrogen (H-2). In this context, titanium dioxide (TiO2) and iron oxide (hematite, alpha-Fe2O3) are among the most investigated candidates as photoanode materials, mainly owing to their resistance to photocorrosion, non-toxicity, natural abundance, and low production cost. Major drawbacks are, however, an inherently low electrical conductivity and a limited hole diffusion length that significantly affect the performance of TiO2 and alpha-Fe2O3 in PEC devices. To this regard, one-dimensional (1D) nanostructuring is typically applied as it provides several superior features such as a significant enlargement of the material surface area, extended contact between the semiconductor and the electrolyte and, most remarkably, preferential electrical transport that overall suppress charge carrier recombination and improve TiO2 and alpha-Fe2O3 photoelectrocatalytic properties. The present review describes various synthetic methods and modifying concepts of 1D-photoanodes (nanotubes, nanorods, nanofibers, nanowires) based on titania, hematite, and on alpha-Fe2O3/TiO2 heterostructures, for PEC applications. Various routes towards modification and enhancement of PEC activity of 1D photoanodes are discussed including doping, decoration with co-catalysts and heterojunction engineering. Finally, the challenges related to the optimization of charge transfer kinetics in both oxides are highlighted.

  • Název v anglickém jazyce

    Photoanodes based on TiO2 and alpha-Fe2O3 for solar water splitting - superior role of 1D nanoarchitectures and of combined heterostructures

  • Popis výsledku anglicky

    Solar driven photoelectrochemical water splitting (PEC-WS) using semiconductor photoelectrodes represents a promising approach for a sustainable and environmentally friendly production of renewable energy vectors and fuel sources, such as dihydrogen (H-2). In this context, titanium dioxide (TiO2) and iron oxide (hematite, alpha-Fe2O3) are among the most investigated candidates as photoanode materials, mainly owing to their resistance to photocorrosion, non-toxicity, natural abundance, and low production cost. Major drawbacks are, however, an inherently low electrical conductivity and a limited hole diffusion length that significantly affect the performance of TiO2 and alpha-Fe2O3 in PEC devices. To this regard, one-dimensional (1D) nanostructuring is typically applied as it provides several superior features such as a significant enlargement of the material surface area, extended contact between the semiconductor and the electrolyte and, most remarkably, preferential electrical transport that overall suppress charge carrier recombination and improve TiO2 and alpha-Fe2O3 photoelectrocatalytic properties. The present review describes various synthetic methods and modifying concepts of 1D-photoanodes (nanotubes, nanorods, nanofibers, nanowires) based on titania, hematite, and on alpha-Fe2O3/TiO2 heterostructures, for PEC applications. Various routes towards modification and enhancement of PEC activity of 1D photoanodes are discussed including doping, decoration with co-catalysts and heterojunction engineering. Finally, the challenges related to the optimization of charge transfer kinetics in both oxides are highlighted.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Chemical Society Reviews

  • ISSN

    0306-0012

  • e-ISSN

  • Svazek periodika

    46

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    54

  • Strana od-do

    3716-3769

  • Kód UT WoS článku

    000403555500006

  • EID výsledku v databázi Scopus