Decision matrices under risk with fuzzy states of the world and underlying discrete fuzzy probability measure
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F17%3A73583404" target="_blank" >RIV/61989592:15310/17:73583404 - isvavai.cz</a>
Výsledek na webu
<a href="http://fim2.uhk.cz/mme/conferenceproceedings/mme2017_conference_proceedings.pdf" target="_blank" >http://fim2.uhk.cz/mme/conferenceproceedings/mme2017_conference_proceedings.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Decision matrices under risk with fuzzy states of the world and underlying discrete fuzzy probability measure
Popis výsledku v původním jazyce
The problem of decision-making under risk can be expressed by a decision matrix whose elements express the outcomes if a decision-maker chooses the particular alternative and the particular state of the world occurs. In practice, the states of the world can be described only vaguely. Therefore, in such a case we dealt with the decision matrix with fuzzy states of the world that were modelled by fuzzy sets on the universal set on which the probability distribution is given. However, the underlying probability distribution itself can be known also only vaguely. In such a case it is appropriate to apply a fuzzy probability measure. In the paper, we consider the case where the set of elementary events is finite and the probabilities of elementary events are fuzzy. We compare two approaches to expression of the expected values and the variances of the outcomes of alternatives. The first approach is inspired by the probability of a fuzzy event proposed by Zadeh. The second one is based on treating the decision matrix as a fuzzy rule bases system. We illustrate the problem by a numerical example from economic practice.
Název v anglickém jazyce
Decision matrices under risk with fuzzy states of the world and underlying discrete fuzzy probability measure
Popis výsledku anglicky
The problem of decision-making under risk can be expressed by a decision matrix whose elements express the outcomes if a decision-maker chooses the particular alternative and the particular state of the world occurs. In practice, the states of the world can be described only vaguely. Therefore, in such a case we dealt with the decision matrix with fuzzy states of the world that were modelled by fuzzy sets on the universal set on which the probability distribution is given. However, the underlying probability distribution itself can be known also only vaguely. In such a case it is appropriate to apply a fuzzy probability measure. In the paper, we consider the case where the set of elementary events is finite and the probabilities of elementary events are fuzzy. We compare two approaches to expression of the expected values and the variances of the outcomes of alternatives. The first approach is inspired by the probability of a fuzzy event proposed by Zadeh. The second one is based on treating the decision matrix as a fuzzy rule bases system. We illustrate the problem by a numerical example from economic practice.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
35th International Conference Mathematical Methods in Economics MME 2017 Conference Proceedings
ISBN
978-80-7435-678-0
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
6
Strana od-do
626-631
Název nakladatele
Gaudeamus
Místo vydání
Hradec Králové
Místo konání akce
Hradec Králové
Datum konání akce
13. 9. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—