Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

De Morgan Algebras with Tense Operators

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F17%3A73583892" target="_blank" >RIV/61989592:15310/17:73583892 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216224:14310/17:00097592

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    De Morgan Algebras with Tense Operators

  • Popis výsledku v původním jazyce

    To every propositional logic satisfying double negation law is assigned a De Morgan poset epsilon. Using of axioms for an universal quantifier, we set up axioms for the so-called tense operators G and H on E. The triple D = (epsilon; G, H) is called a (partial) dynamic De Morgan algebra. We solve the following questions: first, if a time frame is given, how to construct tense operators G and H; second, if a (strict) dynamic De Morgan algebra is given, how to find a time frame such that its tense operators G and H can be reached by this construction. In particular, any strict dynamic De Morgan algebra is representable in its Dedekind-MacNeille completion with respect to a suitable countable time frame.

  • Název v anglickém jazyce

    De Morgan Algebras with Tense Operators

  • Popis výsledku anglicky

    To every propositional logic satisfying double negation law is assigned a De Morgan poset epsilon. Using of axioms for an universal quantifier, we set up axioms for the so-called tense operators G and H on E. The triple D = (epsilon; G, H) is called a (partial) dynamic De Morgan algebra. We solve the following questions: first, if a time frame is given, how to construct tense operators G and H; second, if a (strict) dynamic De Morgan algebra is given, how to find a time frame such that its tense operators G and H can be reached by this construction. In particular, any strict dynamic De Morgan algebra is representable in its Dedekind-MacNeille completion with respect to a suitable countable time frame.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Multiple-Valued Logic and Soft Computing

  • ISSN

    1542-3980

  • e-ISSN

  • Svazek periodika

    28

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    17

  • Strana od-do

    29-45

  • Kód UT WoS článku

    000403136800003

  • EID výsledku v databázi Scopus

    2-s2.0-85007011914