Efficient multicolor tunability of ultrasmall ternary-doped LaF3 nanoparticles: energy conversion and magnetic behavior
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F17%3A73583980" target="_blank" >RIV/61989592:15310/17:73583980 - isvavai.cz</a>
Výsledek na webu
<a href="http://pubs.rsc.org/-/content/articlehtml/2017/cp/c7cp02235b" target="_blank" >http://pubs.rsc.org/-/content/articlehtml/2017/cp/c7cp02235b</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/c7cp02235b" target="_blank" >10.1039/c7cp02235b</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient multicolor tunability of ultrasmall ternary-doped LaF3 nanoparticles: energy conversion and magnetic behavior
Popis výsledku v původním jazyce
Luminescence-tunable multicolored LaF3: xCe(3+), xGd(3+), yEu(3+) (x = 5; y = 1, 5, 10, and 15 mol%) nanoparticles have been synthesized via a low cost polyol method. Powder X-ray diffraction and high-resolution transmission electron microscopy studies confirm the hexagonal phase of the LaF3: xCe(3+), xGd(3+), yEu(3+) nanophosphors with average sizes (oval shape) ranging from 5 to 7 nm. Energy-dispersive X-ray spectroscopy analyses show the uniform distribution of Ce3+, Gd3+, and Eu3+ dopants in the LaF3 host matrix. The photoluminescence spectra and electron paramagnetic resonance measurements guarantee the presence of Eu2+, corroborated through DC susceptibility measurements of the samples displaying paramagnetic behavior at 300 K, whereas weak ferromagnetic ordering is shown at 2 K. The non-radiative energy transfer processes from the 4f(F-2(5/2)) -> 5d state (Ce3+) to the intraconfigurational 4f excited levels of rare earth ions and simultaneous emissions in the visible region from the 4f(6)5d(1) (Eu2+) and D-5(0) (Eu3+) emitting levels, leading to overlapped broad and narrow emission bands, have been proclaimed. The energy transfer mechanism proposes involvement of the Gd3+ ion sub-lattice as the bridge and finally trapping by Eu2+/3+, upon excitation of the Ce3+ ion. The calculation of experimental intensity parameters (Omega(2,4)) has been discussed and the highest emission quantum efficiency (eta = 85%) of the Eu3+ ion for the y = 10 mol% sample is reported. The advantageous existence of the Eu2+/Eu3+ ratio along with variously doped nanomaterials described in this work, results in tunable emission color in the blue-white-red regions, highlighting the potential application of the samples in solid-state lighting devices, scintillation devices, and multiplex detection.
Název v anglickém jazyce
Efficient multicolor tunability of ultrasmall ternary-doped LaF3 nanoparticles: energy conversion and magnetic behavior
Popis výsledku anglicky
Luminescence-tunable multicolored LaF3: xCe(3+), xGd(3+), yEu(3+) (x = 5; y = 1, 5, 10, and 15 mol%) nanoparticles have been synthesized via a low cost polyol method. Powder X-ray diffraction and high-resolution transmission electron microscopy studies confirm the hexagonal phase of the LaF3: xCe(3+), xGd(3+), yEu(3+) nanophosphors with average sizes (oval shape) ranging from 5 to 7 nm. Energy-dispersive X-ray spectroscopy analyses show the uniform distribution of Ce3+, Gd3+, and Eu3+ dopants in the LaF3 host matrix. The photoluminescence spectra and electron paramagnetic resonance measurements guarantee the presence of Eu2+, corroborated through DC susceptibility measurements of the samples displaying paramagnetic behavior at 300 K, whereas weak ferromagnetic ordering is shown at 2 K. The non-radiative energy transfer processes from the 4f(F-2(5/2)) -> 5d state (Ce3+) to the intraconfigurational 4f excited levels of rare earth ions and simultaneous emissions in the visible region from the 4f(6)5d(1) (Eu2+) and D-5(0) (Eu3+) emitting levels, leading to overlapped broad and narrow emission bands, have been proclaimed. The energy transfer mechanism proposes involvement of the Gd3+ ion sub-lattice as the bridge and finally trapping by Eu2+/3+, upon excitation of the Ce3+ ion. The calculation of experimental intensity parameters (Omega(2,4)) has been discussed and the highest emission quantum efficiency (eta = 85%) of the Eu3+ ion for the y = 10 mol% sample is reported. The advantageous existence of the Eu2+/Eu3+ ratio along with variously doped nanomaterials described in this work, results in tunable emission color in the blue-white-red regions, highlighting the potential application of the samples in solid-state lighting devices, scintillation devices, and multiplex detection.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1305" target="_blank" >LO1305: Rozvoj centra pokročilých technologií a materiálů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Chemistry Chemical Physics
ISSN
1463-9076
e-ISSN
—
Svazek periodika
19
Číslo periodika v rámci svazku
28
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
18660-18670
Kód UT WoS článku
000406089200061
EID výsledku v databázi Scopus
—