Rational In Silico Design of an Organic Semiconductor with Improved Electron Mobility
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F17%3A73586707" target="_blank" >RIV/61989592:15310/17:73586707 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.201703505" target="_blank" >https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.201703505</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adma.201703505" target="_blank" >10.1002/adma.201703505</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Rational In Silico Design of an Organic Semiconductor with Improved Electron Mobility
Popis výsledku v původním jazyce
Organic semiconductors find a wide range of applications, such as in organic light emitting diodes, organic solar cells, and organic field effect transistors. One of their most striking disadvantages in comparison to crystalline inorganic semiconductors is their low charge-carrier mobility, which manifests itself in major device constraints such as limited photoactive layer thicknesses. Trial-and-error attempts to increase charge-carrier mobility are impeded by the complex interplay of the molecular and electronic structure of the material with its morphology. Here, the viability of a multiscale simulation approach to rationally design materials with improved electron mobility is demonstrated. Starting from one of the most widely used electron conducting materials (Alq(3)), novel organic semiconductors with tailored electronic properties are designed for which an improvement of the electron mobility by three orders of magnitude is predicted and experimentally confirmed.
Název v anglickém jazyce
Rational In Silico Design of an Organic Semiconductor with Improved Electron Mobility
Popis výsledku anglicky
Organic semiconductors find a wide range of applications, such as in organic light emitting diodes, organic solar cells, and organic field effect transistors. One of their most striking disadvantages in comparison to crystalline inorganic semiconductors is their low charge-carrier mobility, which manifests itself in major device constraints such as limited photoactive layer thicknesses. Trial-and-error attempts to increase charge-carrier mobility are impeded by the complex interplay of the molecular and electronic structure of the material with its morphology. Here, the viability of a multiscale simulation approach to rationally design materials with improved electron mobility is demonstrated. Starting from one of the most widely used electron conducting materials (Alq(3)), novel organic semiconductors with tailored electronic properties are designed for which an improvement of the electron mobility by three orders of magnitude is predicted and experimentally confirmed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21001 - Nano-materials (production and properties)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Materials
ISSN
0935-9648
e-ISSN
—
Svazek periodika
29
Číslo periodika v rámci svazku
43
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
7
Strana od-do
—
Kód UT WoS článku
000415142100015
EID výsledku v databázi Scopus
—