Gaussian intrinsic entanglement for states with partial minimum uncertainty
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73585891" target="_blank" >RIV/61989592:15310/18:73585891 - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.aps.org/pra/pdf/10.1103/PhysRevA.97.012305" target="_blank" >https://journals.aps.org/pra/pdf/10.1103/PhysRevA.97.012305</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevA.97.012305" target="_blank" >10.1103/PhysRevA.97.012305</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Gaussian intrinsic entanglement for states with partial minimum uncertainty
Popis výsledku v původním jazyce
We develop a recently proposed theory of a quantifier of bipartite Gaussian entanglement called Gaussian intrinsic entanglement (GIE) [L. Mista, Jr. and R. Tatham, Phys. Rev. Lett. 117, 240505 (2016)]. Gaussian intrinsic entanglement provides a compromise between computable and physically meaningful entanglement quantifiers and so far it has been calculated for two-mode Gaussian states including all symmetric partialminimumuncertainty states, weakly mixed asymmetric squeezed thermal states with partial minimum uncertainty, and weakly mixed symmetric squeezed thermal states. We improve the method of derivation of GIE and show that all previously derived formulas for GIE of weakly mixed states in fact hold for states with higher mixedness. In addition, we derive analytical formulas for GIE for several other classes of two-mode Gaussian states with partial minimum uncertainty. Finally, we show that, like for all previously known states, also for all currently considered states the GIE is equal to Gaussian Renyi-2 entanglement of formation. This finding strengthens a conjecture about the equivalence of GIE and Gaussian Renyi-2 entanglement of formation for all bipartite Gaussian states.
Název v anglickém jazyce
Gaussian intrinsic entanglement for states with partial minimum uncertainty
Popis výsledku anglicky
We develop a recently proposed theory of a quantifier of bipartite Gaussian entanglement called Gaussian intrinsic entanglement (GIE) [L. Mista, Jr. and R. Tatham, Phys. Rev. Lett. 117, 240505 (2016)]. Gaussian intrinsic entanglement provides a compromise between computable and physically meaningful entanglement quantifiers and so far it has been calculated for two-mode Gaussian states including all symmetric partialminimumuncertainty states, weakly mixed asymmetric squeezed thermal states with partial minimum uncertainty, and weakly mixed symmetric squeezed thermal states. We improve the method of derivation of GIE and show that all previously derived formulas for GIE of weakly mixed states in fact hold for states with higher mixedness. In addition, we derive analytical formulas for GIE for several other classes of two-mode Gaussian states with partial minimum uncertainty. Finally, we show that, like for all previously known states, also for all currently considered states the GIE is equal to Gaussian Renyi-2 entanglement of formation. This finding strengthens a conjecture about the equivalence of GIE and Gaussian Renyi-2 entanglement of formation for all bipartite Gaussian states.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review A
ISSN
2469-9926
e-ISSN
—
Svazek periodika
97
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
"012305-1"-"012305-20"
Kód UT WoS článku
000419702700001
EID výsledku v databázi Scopus
2-s2.0-85042053797