Nanoarchitecture of advanced core-shell zero-valent iron particles with controlled reactivity for contaminant removal
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73588248" target="_blank" >RIV/61989592:15310/18:73588248 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1385894718314827" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1385894718314827</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cej.2018.08.015" target="_blank" >10.1016/j.cej.2018.08.015</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Nanoarchitecture of advanced core-shell zero-valent iron particles with controlled reactivity for contaminant removal
Popis výsledku v původním jazyce
The optimization of nanoscale zero-valent iron (nZVI) for groundwater remediation applications requires consideration of properties that influence its longevity and transport in porous media and reactivity with contaminants. Here, we report on the stabilization of nZVI by controlled growth of oxide shells of varying thickness and characterization of the resulting materials' structure and reactivity. Using a thermal oxidation method, nZVI was prepared with shell thickness varying between 4 and 10 nm. These nZVI materials, together with pyrophoric nZVI (without a passivating oxide coating) and two commercial nZVI materials (NANOFER STAR and NANOFER 25), were characterized in detail with respect to morphology, shell thickness, structure, magnetism, stability, and reactivity. The results show that increasing oxidation temperature results in thicker oxide coatings on the particles, but these coatings also have more fractures and other defects. The reactivity of these particles, demonstrated on Cr(VI) and Cu(II) removal, increases with increasing shell thickness, probably as a result of higher extent of defects in thicker shell. Therefore the ability to control thickness and character of the shell leads to possibility to controlling reactivity while keeping comparable content of Fe(0) in the material. These nZVI materials with 7 and 10 nm oxide shell prepared via simple solid-gas synthesis can be used as a suitable alternative to common air-stable nZVI without additional activation steps.
Název v anglickém jazyce
Nanoarchitecture of advanced core-shell zero-valent iron particles with controlled reactivity for contaminant removal
Popis výsledku anglicky
The optimization of nanoscale zero-valent iron (nZVI) for groundwater remediation applications requires consideration of properties that influence its longevity and transport in porous media and reactivity with contaminants. Here, we report on the stabilization of nZVI by controlled growth of oxide shells of varying thickness and characterization of the resulting materials' structure and reactivity. Using a thermal oxidation method, nZVI was prepared with shell thickness varying between 4 and 10 nm. These nZVI materials, together with pyrophoric nZVI (without a passivating oxide coating) and two commercial nZVI materials (NANOFER STAR and NANOFER 25), were characterized in detail with respect to morphology, shell thickness, structure, magnetism, stability, and reactivity. The results show that increasing oxidation temperature results in thicker oxide coatings on the particles, but these coatings also have more fractures and other defects. The reactivity of these particles, demonstrated on Cr(VI) and Cu(II) removal, increases with increasing shell thickness, probably as a result of higher extent of defects in thicker shell. Therefore the ability to control thickness and character of the shell leads to possibility to controlling reactivity while keeping comparable content of Fe(0) in the material. These nZVI materials with 7 and 10 nm oxide shell prepared via simple solid-gas synthesis can be used as a suitable alternative to common air-stable nZVI without additional activation steps.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21002 - Nano-processes (applications on nano-scale); (biomaterials to be 2.9)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
CHEMICAL ENGINEERING JOURNAL
ISSN
1385-8947
e-ISSN
—
Svazek periodika
354
Číslo periodika v rámci svazku
DEC
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
11
Strana od-do
335-345
Kód UT WoS článku
000445413900034
EID výsledku v databázi Scopus
2-s2.0-85051263201