Markov kernels and tribes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73589773" target="_blank" >RIV/61989592:15310/18:73589773 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0020025516314505" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0020025516314505</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ins.2018.05.042" target="_blank" >10.1016/j.ins.2018.05.042</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Markov kernels and tribes
Popis výsledku v původním jazyce
We define an ordering on the set of bounded Markov kernels associated with a tribe of fuzzy sets. We show that under this order, the set of bounded Markov kernels is a Dedekind sigma-complete lattice. In addition, we define a sum of bounded Markov kernels such that the set of bounded Markov kernels is a lattice-ordered semigroup. If we concentrate only to sharp bounded Markov kernels, then this set is even a Dedekind sigma-complete l-group with strong unit. We show that our methods work also for bounded Markov kernels associated with T-s-tribes of fuzzy sets, where T-s is any Frank t-norm and s is an element of (0, infinity). (C) 2018 Elsevier Inc. All rights reserved.
Název v anglickém jazyce
Markov kernels and tribes
Popis výsledku anglicky
We define an ordering on the set of bounded Markov kernels associated with a tribe of fuzzy sets. We show that under this order, the set of bounded Markov kernels is a Dedekind sigma-complete lattice. In addition, we define a sum of bounded Markov kernels such that the set of bounded Markov kernels is a lattice-ordered semigroup. If we concentrate only to sharp bounded Markov kernels, then this set is even a Dedekind sigma-complete l-group with strong unit. We show that our methods work also for bounded Markov kernels associated with T-s-tribes of fuzzy sets, where T-s is any Frank t-norm and s is an element of (0, infinity). (C) 2018 Elsevier Inc. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
INFORMATION SCIENCES
ISSN
0020-0255
e-ISSN
—
Svazek periodika
460
Číslo periodika v rámci svazku
SEP
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
42-50
Kód UT WoS článku
000441494000003
EID výsledku v databázi Scopus
2-s2.0-85047473477