Mixed-Valence Single-Atom Catalyst Derived from Functionalized Graphene
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73594904" target="_blank" >RIV/61989592:15310/19:73594904 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201900323" target="_blank" >https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201900323</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adma.201900323" target="_blank" >10.1002/adma.201900323</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mixed-Valence Single-Atom Catalyst Derived from Functionalized Graphene
Popis výsledku v původním jazyce
Single-atom catalysts (SACs) aim at bridging the gap between homogeneous and heterogeneous catalysis. The challenge is the development of materials with ligands enabling coordination of metal atoms in different valence states, and preventing leaching or nanoparticle formation. Graphene functionalized with nitrile groups (cyanographene) is herein employed for the robust coordination of Cu(II) ions, which are partially reduced to Cu(I) due to graphene-induced charge transfer. Inspired by nature's selection of Cu(I) in enzymes for oxygen activation, this 2D mixed-valence SAC performs flawlessly in two O-2-mediated reactions: the oxidative coupling of amines and the oxidation of benzylic C-H bonds toward high-value pharmaceutical synthons. High conversions (up to 98%), selectivities (up to 99%), and recyclability are attained with very low metal loadings in the reaction. The synergistic effect of Cu(II) and Cu(I) is the essential part in the reaction mechanism. The developed strategy opens the door to a broad portfolio of other SACs via their coordination to various functional groups of graphene, as demonstrated by successful entrapment of Fe-III/Fe-II single atoms to carboxy-graphene.
Název v anglickém jazyce
Mixed-Valence Single-Atom Catalyst Derived from Functionalized Graphene
Popis výsledku anglicky
Single-atom catalysts (SACs) aim at bridging the gap between homogeneous and heterogeneous catalysis. The challenge is the development of materials with ligands enabling coordination of metal atoms in different valence states, and preventing leaching or nanoparticle formation. Graphene functionalized with nitrile groups (cyanographene) is herein employed for the robust coordination of Cu(II) ions, which are partially reduced to Cu(I) due to graphene-induced charge transfer. Inspired by nature's selection of Cu(I) in enzymes for oxygen activation, this 2D mixed-valence SAC performs flawlessly in two O-2-mediated reactions: the oxidative coupling of amines and the oxidation of benzylic C-H bonds toward high-value pharmaceutical synthons. High conversions (up to 98%), selectivities (up to 99%), and recyclability are attained with very low metal loadings in the reaction. The synergistic effect of Cu(II) and Cu(I) is the essential part in the reaction mechanism. The developed strategy opens the door to a broad portfolio of other SACs via their coordination to various functional groups of graphene, as demonstrated by successful entrapment of Fe-III/Fe-II single atoms to carboxy-graphene.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Materials
ISSN
0935-9648
e-ISSN
—
Svazek periodika
31
Číslo periodika v rámci svazku
17
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
9
Strana od-do
"1900323-1"-"1900323-9"
Kód UT WoS článku
000465600000025
EID výsledku v databázi Scopus
2-s2.0-85062321283