Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Metal-Organic Framework (MOF) Derived Electrodes with Robust and Fast Lithium Storage for Li-Ion Hybrid Capacitors

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73594942" target="_blank" >RIV/61989592:15310/19:73594942 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201900532" target="_blank" >https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201900532</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/adfm.201900532" target="_blank" >10.1002/adfm.201900532</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Metal-Organic Framework (MOF) Derived Electrodes with Robust and Fast Lithium Storage for Li-Ion Hybrid Capacitors

  • Popis výsledku v původním jazyce

    Hybrid metal-organic frameworks (MOFs) demonstrate great promise as ideal electrode materials for energy-related applications. Herein, a well-organized interleaved composite of graphene-like nanosheets embedded with MnO2 nanoparticles (MnO2@C-NS) using a manganese-based MOF and employed as a promising anode material for Li-ion hybrid capacitor (LIHC) is engineered. This unique hybrid architecture shows intriguing electrochemical properties including high reversible specific capacity 1054 mAh g(-1) (close to the theoretical capacity of MnO2, 1232 mAh g(-1)) at 0.1 A g(-1) with remarkable rate capability and cyclic stability (90% over 1000 cycles). Such a remarkable performance may be assigned to the hierarchical porous ultrathin carbon nanosheets and tightly attached MnO2 nanoparticles, which provide structural stability and low contact resistance during repetitive lithiation/delithiation processes. Moreover, a novel LIHC is assembled using a MnO2@C-NS anode and MOF derived ultrathin nanoporous carbon nanosheets (derived from other potassium-based MOFs) cathode materials. The LIHC full-cell delivers an ultrahigh specific energy of 166 Wh kg(-1) at 550 W kg(-1) and maintained to 49.2 Wh kg(-1) even at high specific power of 3.5 kW kg(-1) as well as long cycling stability (91% over 5000 cycles). This work opens new opportunities for designing advanced MOF derived electrodes for next-generation energy storage devices.

  • Název v anglickém jazyce

    Metal-Organic Framework (MOF) Derived Electrodes with Robust and Fast Lithium Storage for Li-Ion Hybrid Capacitors

  • Popis výsledku anglicky

    Hybrid metal-organic frameworks (MOFs) demonstrate great promise as ideal electrode materials for energy-related applications. Herein, a well-organized interleaved composite of graphene-like nanosheets embedded with MnO2 nanoparticles (MnO2@C-NS) using a manganese-based MOF and employed as a promising anode material for Li-ion hybrid capacitor (LIHC) is engineered. This unique hybrid architecture shows intriguing electrochemical properties including high reversible specific capacity 1054 mAh g(-1) (close to the theoretical capacity of MnO2, 1232 mAh g(-1)) at 0.1 A g(-1) with remarkable rate capability and cyclic stability (90% over 1000 cycles). Such a remarkable performance may be assigned to the hierarchical porous ultrathin carbon nanosheets and tightly attached MnO2 nanoparticles, which provide structural stability and low contact resistance during repetitive lithiation/delithiation processes. Moreover, a novel LIHC is assembled using a MnO2@C-NS anode and MOF derived ultrathin nanoporous carbon nanosheets (derived from other potassium-based MOFs) cathode materials. The LIHC full-cell delivers an ultrahigh specific energy of 166 Wh kg(-1) at 550 W kg(-1) and maintained to 49.2 Wh kg(-1) even at high specific power of 3.5 kW kg(-1) as well as long cycling stability (91% over 5000 cycles). This work opens new opportunities for designing advanced MOF derived electrodes for next-generation energy storage devices.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Advanced Functional Materials

  • ISSN

    1616-301X

  • e-ISSN

  • Svazek periodika

    29

  • Číslo periodika v rámci svazku

    19

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    11

  • Strana od-do

    "1900532-1"-"1900532-11"

  • Kód UT WoS článku

    000471333600019

  • EID výsledku v databázi Scopus

    2-s2.0-85062977324