Significant enhancement of photoactivity in one-dimensional TiO2 nanorods modified by S-, N-, O-doped carbon nanosheets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73595036" target="_blank" >RIV/61989592:15310/19:73595036 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0920586118310848" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0920586118310848</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cattod.2019.01.024" target="_blank" >10.1016/j.cattod.2019.01.024</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Significant enhancement of photoactivity in one-dimensional TiO2 nanorods modified by S-, N-, O-doped carbon nanosheets
Popis výsledku v původním jazyce
Titanium dioxide (TiO2) represents one of the most active photocatalysts among metal oxides for the degradation of pollutants and for solar water splitting to produce hydrogen. The most critical drawbacks hindering its broad practical use are the absorption majorly in the UV part of solar spectrum and slow charge dynamics. Combination of TiO2 with a suitable partner in a hybrid nanostructure can effectively address these drawbacks. Here we report a novel nanocomposite system based on one-dimensional TiO2 nanorods wrapped with a sulfur-, nitrogen-, and oxygen-doped carbon (SNOC) nanosheets. The SNOC nanosheets are synthesized by a cost-effective and facile route using eco-friendly carrageenan as a sulfur, oxygen, and carbon source and urea as a nitrogen source. Silica was used as the templating agent that leads to large surface area materials after its removal at the end of the synthesis. Therefore, the synthesized material exhibits superior photocatalytic performance for decoloring representative Rhodamine B (RhB) under visible light irradiation. SNOC shows the apparent rate constant of 7.6x10(-3) min(-1), which is almost 3 times higher than that of a SNOC material without using silica (2.8x10(-3) min(-1)). This performance of doped carbon material can be assigned to the effect of large surface area and effective visible light adsorption. The TiO2 NRs/SNOC nanocomposite was investigated for photoelectrochemical water splitting showing much higher photocurrent densities (0.85 mA cm(-2)) than pure TiO2 nanorod arrays (0.35 mA cm(-2)), which was due to significant improvement in the charge transfer dynamics and co-catalytic effect of SNOC. All the materials prepared were evaluated on the basis of physical properties such as crystalline structure, optical absorption, surface topography, and electronic properties.
Název v anglickém jazyce
Significant enhancement of photoactivity in one-dimensional TiO2 nanorods modified by S-, N-, O-doped carbon nanosheets
Popis výsledku anglicky
Titanium dioxide (TiO2) represents one of the most active photocatalysts among metal oxides for the degradation of pollutants and for solar water splitting to produce hydrogen. The most critical drawbacks hindering its broad practical use are the absorption majorly in the UV part of solar spectrum and slow charge dynamics. Combination of TiO2 with a suitable partner in a hybrid nanostructure can effectively address these drawbacks. Here we report a novel nanocomposite system based on one-dimensional TiO2 nanorods wrapped with a sulfur-, nitrogen-, and oxygen-doped carbon (SNOC) nanosheets. The SNOC nanosheets are synthesized by a cost-effective and facile route using eco-friendly carrageenan as a sulfur, oxygen, and carbon source and urea as a nitrogen source. Silica was used as the templating agent that leads to large surface area materials after its removal at the end of the synthesis. Therefore, the synthesized material exhibits superior photocatalytic performance for decoloring representative Rhodamine B (RhB) under visible light irradiation. SNOC shows the apparent rate constant of 7.6x10(-3) min(-1), which is almost 3 times higher than that of a SNOC material without using silica (2.8x10(-3) min(-1)). This performance of doped carbon material can be assigned to the effect of large surface area and effective visible light adsorption. The TiO2 NRs/SNOC nanocomposite was investigated for photoelectrochemical water splitting showing much higher photocurrent densities (0.85 mA cm(-2)) than pure TiO2 nanorod arrays (0.35 mA cm(-2)), which was due to significant improvement in the charge transfer dynamics and co-catalytic effect of SNOC. All the materials prepared were evaluated on the basis of physical properties such as crystalline structure, optical absorption, surface topography, and electronic properties.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Catalysis Today
ISSN
0920-5861
e-ISSN
—
Svazek periodika
328
Číslo periodika v rámci svazku
MAY
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
7
Strana od-do
111-117
Kód UT WoS článku
000461462200018
EID výsledku v databázi Scopus
2-s2.0-85059735291