The Discrete Basis Problem and Asso Algorithm for Fuzzy Attributes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73595300" target="_blank" >RIV/61989592:15310/19:73595300 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/abstract/document/8528862" target="_blank" >https://ieeexplore.ieee.org/abstract/document/8528862</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TFUZZ.2018.2880418" target="_blank" >10.1109/TFUZZ.2018.2880418</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Discrete Basis Problem and Asso Algorithm for Fuzzy Attributes
Popis výsledku v původním jazyce
We present an extension of the discrete basis problem, recently a profoundly studied problem, from the Boolean setting to the setting of fuzzy attributes, i.e., a setting of ordinal data. Our problem consists in finding for a given object-attribute matrix I containing truth degrees and a prescribed number k of factors the best approximate decomposition of I into an object-factor matrix A and a factor-attribute matrix B. Since such matrices represent fuzzy relations, the problem is related to but very different from that of decomposition of fuzzy relations as studied in fuzzy relational equations because neither A nor B are supposed to be known in our problem. We observe that our problem is NP-hard as an optimization problem. Consequently, we provide an approximation algorithm for solving this problem and provide its time complexity in the worst case. The algorithm is inspired by the Asso algorithm, which is known for Boolean attributes and is based on new considerations regarding associations among fuzzy attributes. We provide an experimental evaluation on various datasets and demonstrate that our algorithm is capable of extracting informative factors in data. We conclude with a discussion regarding future research issues.
Název v anglickém jazyce
The Discrete Basis Problem and Asso Algorithm for Fuzzy Attributes
Popis výsledku anglicky
We present an extension of the discrete basis problem, recently a profoundly studied problem, from the Boolean setting to the setting of fuzzy attributes, i.e., a setting of ordinal data. Our problem consists in finding for a given object-attribute matrix I containing truth degrees and a prescribed number k of factors the best approximate decomposition of I into an object-factor matrix A and a factor-attribute matrix B. Since such matrices represent fuzzy relations, the problem is related to but very different from that of decomposition of fuzzy relations as studied in fuzzy relational equations because neither A nor B are supposed to be known in our problem. We observe that our problem is NP-hard as an optimization problem. Consequently, we provide an approximation algorithm for solving this problem and provide its time complexity in the worst case. The algorithm is inspired by the Asso algorithm, which is known for Boolean attributes and is based on new considerations regarding associations among fuzzy attributes. We provide an experimental evaluation on various datasets and demonstrate that our algorithm is capable of extracting informative factors in data. We conclude with a discussion regarding future research issues.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-17899S" target="_blank" >GA15-17899S: Rozklady matic s booleovskými a ordinálními daty: teorie a algoritmy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE TRANSACTIONS ON FUZZY SYSTEMS
ISSN
1063-6706
e-ISSN
—
Svazek periodika
27
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
1417-1427
Kód UT WoS článku
000473644200008
EID výsledku v databázi Scopus
2-s2.0-85056324587