Parallel exploration of partial solutions in Boolean matrix factorization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73595308" target="_blank" >RIV/61989592:15310/19:73595308 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0743731518306968" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0743731518306968</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jpdc.2018.09.014" target="_blank" >10.1016/j.jpdc.2018.09.014</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Parallel exploration of partial solutions in Boolean matrix factorization
Popis výsledku v původním jazyce
Boolean matrix factorization (BMF) is a well established method for preprocessing and analysis of data. There is a number of algorithms for BMF, but none of them uses benefits of parallelization. This is mainly due to the fact that many of the algorithms utilize greedy heuristics that are inherently sequential. In this work, we propose a general parallelization scheme for BMF in which several locally optimal partial matrix decompositions are constructed simultaneously in parallel, instead of just one in a sequential algorithm. As a result of the computation, either the single best final decomposition or several top-k of them may be returned. The scheme can be applied to any sequential heuristic BMF algorithm and we show the application on two representative algorithms, namely GRECOND and ASSO. Improvements in decompositions are presented via results from experiments with the new algorithms on synthetic and real datasets
Název v anglickém jazyce
Parallel exploration of partial solutions in Boolean matrix factorization
Popis výsledku anglicky
Boolean matrix factorization (BMF) is a well established method for preprocessing and analysis of data. There is a number of algorithms for BMF, but none of them uses benefits of parallelization. This is mainly due to the fact that many of the algorithms utilize greedy heuristics that are inherently sequential. In this work, we propose a general parallelization scheme for BMF in which several locally optimal partial matrix decompositions are constructed simultaneously in parallel, instead of just one in a sequential algorithm. As a result of the computation, either the single best final decomposition or several top-k of them may be returned. The scheme can be applied to any sequential heuristic BMF algorithm and we show the application on two representative algorithms, namely GRECOND and ASSO. Improvements in decompositions are presented via results from experiments with the new algorithms on synthetic and real datasets
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-17899S" target="_blank" >GA15-17899S: Rozklady matic s booleovskými a ordinálními daty: teorie a algoritmy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING
ISSN
0743-7315
e-ISSN
—
Svazek periodika
123
Číslo periodika v rámci svazku
JAN
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
180-191
Kód UT WoS článku
000451108900016
EID výsledku v databázi Scopus
2-s2.0-85054908648