Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Interaction of light and semiconductor can generate quantum states required for solid-state quantum computing: entangled, steered and other nonclassical states

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73596265" target="_blank" >RIV/61989592:15310/19:73596265 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/content/pdf/10.1007%2Fs11128-019-2344-0.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007%2Fs11128-019-2344-0.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11128-019-2344-0" target="_blank" >10.1007/s11128-019-2344-0</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Interaction of light and semiconductor can generate quantum states required for solid-state quantum computing: entangled, steered and other nonclassical states

  • Popis výsledku v původním jazyce

    Proposals for solid-state quantum computing are extremely promising as they can be used to build room temperature quantum computers. If such a quantum computer is ever built, it would require built-in sources of nonclassical states required for various quantum information processing tasks. Possibilities of generation of such nonclassical states are investigated here for a physical system composed of a monochromatic light coupled to a two-band semiconductor with direct band gap. The model Hamiltonian includes both photon-exciton and exciton-exciton interactions. Time evolution of the relevant bosonic operators is obtained analytically by using a perturbative technique that provides operator solution for the coupled Heisenberg&apos;s equations of motion corresponding to the system Hamiltonian. The bosonic operators are subsequently used to study the possibilities of observing single- and two-mode squeezing and antibunching after interaction in the relevant modes of light and semiconductor. Further, entanglement between the exciton and photon modes is reported. Finally, the nonclassical effects have been studied numerically for the open quantum system scenario. In this situation, the nonlocal correlations between two modes are shown to violate EPR steering inequality. The observed nonclassical features, induced due to exciton-exciton pair interaction, can be controlled by the phase of input field, and the correlations between two modes are shown to enhance due to nonclassicality in the input field.

  • Název v anglickém jazyce

    Interaction of light and semiconductor can generate quantum states required for solid-state quantum computing: entangled, steered and other nonclassical states

  • Popis výsledku anglicky

    Proposals for solid-state quantum computing are extremely promising as they can be used to build room temperature quantum computers. If such a quantum computer is ever built, it would require built-in sources of nonclassical states required for various quantum information processing tasks. Possibilities of generation of such nonclassical states are investigated here for a physical system composed of a monochromatic light coupled to a two-band semiconductor with direct band gap. The model Hamiltonian includes both photon-exciton and exciton-exciton interactions. Time evolution of the relevant bosonic operators is obtained analytically by using a perturbative technique that provides operator solution for the coupled Heisenberg&apos;s equations of motion corresponding to the system Hamiltonian. The bosonic operators are subsequently used to study the possibilities of observing single- and two-mode squeezing and antibunching after interaction in the relevant modes of light and semiconductor. Further, entanglement between the exciton and photon modes is reported. Finally, the nonclassical effects have been studied numerically for the open quantum system scenario. In this situation, the nonlocal correlations between two modes are shown to violate EPR steering inequality. The observed nonclassical features, induced due to exciton-exciton pair interaction, can be controlled by the phase of input field, and the correlations between two modes are shown to enhance due to nonclassicality in the input field.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10306 - Optics (including laser optics and quantum optics)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LO1305" target="_blank" >LO1305: Rozvoj centra pokročilých technologií a materiálů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Quantum Information Processing

  • ISSN

    1570-0755

  • e-ISSN

  • Svazek periodika

    18

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    23

  • Strana od-do

    "234-1"-"234-23"

  • Kód UT WoS článku

    000470757200002

  • EID výsledku v databázi Scopus

    2-s2.0-85067055364