Interaction of light and semiconductor can generate quantum states required for solid-state quantum computing: entangled, steered and other nonclassical states
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73596265" target="_blank" >RIV/61989592:15310/19:73596265 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/content/pdf/10.1007%2Fs11128-019-2344-0.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007%2Fs11128-019-2344-0.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11128-019-2344-0" target="_blank" >10.1007/s11128-019-2344-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Interaction of light and semiconductor can generate quantum states required for solid-state quantum computing: entangled, steered and other nonclassical states
Popis výsledku v původním jazyce
Proposals for solid-state quantum computing are extremely promising as they can be used to build room temperature quantum computers. If such a quantum computer is ever built, it would require built-in sources of nonclassical states required for various quantum information processing tasks. Possibilities of generation of such nonclassical states are investigated here for a physical system composed of a monochromatic light coupled to a two-band semiconductor with direct band gap. The model Hamiltonian includes both photon-exciton and exciton-exciton interactions. Time evolution of the relevant bosonic operators is obtained analytically by using a perturbative technique that provides operator solution for the coupled Heisenberg's equations of motion corresponding to the system Hamiltonian. The bosonic operators are subsequently used to study the possibilities of observing single- and two-mode squeezing and antibunching after interaction in the relevant modes of light and semiconductor. Further, entanglement between the exciton and photon modes is reported. Finally, the nonclassical effects have been studied numerically for the open quantum system scenario. In this situation, the nonlocal correlations between two modes are shown to violate EPR steering inequality. The observed nonclassical features, induced due to exciton-exciton pair interaction, can be controlled by the phase of input field, and the correlations between two modes are shown to enhance due to nonclassicality in the input field.
Název v anglickém jazyce
Interaction of light and semiconductor can generate quantum states required for solid-state quantum computing: entangled, steered and other nonclassical states
Popis výsledku anglicky
Proposals for solid-state quantum computing are extremely promising as they can be used to build room temperature quantum computers. If such a quantum computer is ever built, it would require built-in sources of nonclassical states required for various quantum information processing tasks. Possibilities of generation of such nonclassical states are investigated here for a physical system composed of a monochromatic light coupled to a two-band semiconductor with direct band gap. The model Hamiltonian includes both photon-exciton and exciton-exciton interactions. Time evolution of the relevant bosonic operators is obtained analytically by using a perturbative technique that provides operator solution for the coupled Heisenberg's equations of motion corresponding to the system Hamiltonian. The bosonic operators are subsequently used to study the possibilities of observing single- and two-mode squeezing and antibunching after interaction in the relevant modes of light and semiconductor. Further, entanglement between the exciton and photon modes is reported. Finally, the nonclassical effects have been studied numerically for the open quantum system scenario. In this situation, the nonlocal correlations between two modes are shown to violate EPR steering inequality. The observed nonclassical features, induced due to exciton-exciton pair interaction, can be controlled by the phase of input field, and the correlations between two modes are shown to enhance due to nonclassicality in the input field.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1305" target="_blank" >LO1305: Rozvoj centra pokročilých technologií a materiálů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Quantum Information Processing
ISSN
1570-0755
e-ISSN
—
Svazek periodika
18
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
23
Strana od-do
"234-1"-"234-23"
Kód UT WoS článku
000470757200002
EID výsledku v databázi Scopus
2-s2.0-85067055364