Estimation of squeezing in a nonlinear quadrature of a mechanical oscillator
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73596924" target="_blank" >RIV/61989592:15310/19:73596924 - isvavai.cz</a>
Výsledek na webu
<a href="https://iopscience.iop.org/article/10.1088/1367-2630/ab5690/pdf" target="_blank" >https://iopscience.iop.org/article/10.1088/1367-2630/ab5690/pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1367-2630/ab5690" target="_blank" >10.1088/1367-2630/ab5690</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Estimation of squeezing in a nonlinear quadrature of a mechanical oscillator
Popis výsledku v původním jazyce
Processing quantum information on continuous variables requires a highly nonlinear element in order to attain universality. Noise reduction in processing such quantum information involves the use of a nonlinear phase state as a non-Gaussian ancilla. A necessary condition for a nonlinear phase state to implement a nonlinear phase gate is that noise in a selected nonlinear quadrature should decrease below the level of classical states. A reduction of the variance in this nonlinear quadrature below the ground state of the ancilla, a type of nonlinear squeezing, is the resource embedded in these non-Gaussian states and a figure of merit for nonlinear quantum processes. Quantum optomechanics with levitating nanoparticles trapped in nonlinear optical potentials is a promising candidate to achieve such resources in a flexible way. We provide a scheme for reconstructing this figure of merit, which we call nonlinear squeezing, in standard linear quantum optomechanics, analysing the effects of mechanical decoherence processes on the reconstruction and show that all mechanical states which exhibit reduced noise in this nonlinear quadrature are nonclassical.
Název v anglickém jazyce
Estimation of squeezing in a nonlinear quadrature of a mechanical oscillator
Popis výsledku anglicky
Processing quantum information on continuous variables requires a highly nonlinear element in order to attain universality. Noise reduction in processing such quantum information involves the use of a nonlinear phase state as a non-Gaussian ancilla. A necessary condition for a nonlinear phase state to implement a nonlinear phase gate is that noise in a selected nonlinear quadrature should decrease below the level of classical states. A reduction of the variance in this nonlinear quadrature below the ground state of the ancilla, a type of nonlinear squeezing, is the resource embedded in these non-Gaussian states and a figure of merit for nonlinear quantum processes. Quantum optomechanics with levitating nanoparticles trapped in nonlinear optical potentials is a promising candidate to achieve such resources in a flexible way. We provide a scheme for reconstructing this figure of merit, which we call nonlinear squeezing, in standard linear quantum optomechanics, analysing the effects of mechanical decoherence processes on the reconstruction and show that all mechanical states which exhibit reduced noise in this nonlinear quadrature are nonclassical.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
NEW JOURNAL OF PHYSICS
ISSN
1367-2630
e-ISSN
—
Svazek periodika
21
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
"113050-1"-"113050-12"
Kód UT WoS článku
000499457100001
EID výsledku v databázi Scopus
2-s2.0-85077065627