Non-diffracting light in nature: Anomalously reflected self-healing Bessel beams from jewel scarabs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73597413" target="_blank" >RIV/61989592:15310/19:73597413 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26620/19:PU134409
Výsledek na webu
<a href="https://aip.scitation.org/doi/10.1063/1.5125045" target="_blank" >https://aip.scitation.org/doi/10.1063/1.5125045</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.5125045" target="_blank" >10.1063/1.5125045</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Non-diffracting light in nature: Anomalously reflected self-healing Bessel beams from jewel scarabs
Popis výsledku v původním jazyce
We report a study of spatial light modulation in the photonic structure of jewel scarabs, revealing the interplay of the polarization and phase control of light, which is not possible with the current optical technology. Phase measurements performed on jewel scarabs demonstrate that the polarization anomalous (helicity-preserving) reflection of light occurs together with alteration of the dynamic phase associated with the optical path length. This control of light differs from the operation of artificially prepared polarization-sensitive structures, shaping light through the geometric phase altered by the polarization transformation. Challenging three-dimensional imaging of the cuticle, requiring high-resolution quantitative mapping of steep phase changes, has been achieved owing to the optical performance of recently developed geometric-phase microscopy. We find that the cuticle of jewel scarabs is formed of micrometer-sized axicon cells, generating thousands of Bessel beams with subwavelength spot size. The nondiffracting features and the self-healing ability of the Bessel beams originating from the beetle Chrysina gloriosa are demonstrated experimentally. Considering Bragg reflection and shaping of RGB components of white light Bessel beams, we explain the spatial structuring of colors in microscopic images of jewel scarabs and reveal the conversion of colors when changing the distance from the cuticle. The functionality and performance of the cuticle axicon cells are discussed in comparison with high-aperture dielectric meta-axicons, and potential applications in colorimetric refractive index sensing are outlined.
Název v anglickém jazyce
Non-diffracting light in nature: Anomalously reflected self-healing Bessel beams from jewel scarabs
Popis výsledku anglicky
We report a study of spatial light modulation in the photonic structure of jewel scarabs, revealing the interplay of the polarization and phase control of light, which is not possible with the current optical technology. Phase measurements performed on jewel scarabs demonstrate that the polarization anomalous (helicity-preserving) reflection of light occurs together with alteration of the dynamic phase associated with the optical path length. This control of light differs from the operation of artificially prepared polarization-sensitive structures, shaping light through the geometric phase altered by the polarization transformation. Challenging three-dimensional imaging of the cuticle, requiring high-resolution quantitative mapping of steep phase changes, has been achieved owing to the optical performance of recently developed geometric-phase microscopy. We find that the cuticle of jewel scarabs is formed of micrometer-sized axicon cells, generating thousands of Bessel beams with subwavelength spot size. The nondiffracting features and the self-healing ability of the Bessel beams originating from the beetle Chrysina gloriosa are demonstrated experimentally. Considering Bragg reflection and shaping of RGB components of white light Bessel beams, we explain the spatial structuring of colors in microscopic images of jewel scarabs and reveal the conversion of colors when changing the distance from the cuticle. The functionality and performance of the cuticle axicon cells are discussed in comparison with high-aperture dielectric meta-axicons, and potential applications in colorimetric refractive index sensing are outlined.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
APL Photonics
ISSN
2378-0967
e-ISSN
—
Svazek periodika
4
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
"126102-1"-"126102-7"
Kód UT WoS článku
000505600700001
EID výsledku v databázi Scopus
2-s2.0-85076020021