Comparing coherence measures for X states: Can quantum states be ordered based on quantum coherence?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73597486" target="_blank" >RIV/61989592:15310/19:73597486 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/content/pdf/10.1007%2Fs11128-019-2403-6.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007%2Fs11128-019-2403-6.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11128-019-2403-6" target="_blank" >10.1007/s11128-019-2403-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparing coherence measures for X states: Can quantum states be ordered based on quantum coherence?
Popis výsledku v původním jazyce
Quantum coherence is an essential resource for quantum information processing and various quantitative measures of it have been introduced. However, the interconnections between these measures are not yet understood properly. Here, using a large set of randomly prepared two-qubit X states (as well as general two-qubit states) and analytically obtained expressions of various measures of coherence (e.g., relative entropy of coherence, l1 norm of coherence, coherence via skew information, and first-order coherence), it is established that these measures of quantum coherence cannot be used to perform ordering of a set of quantum states based on the amount of coherence present in a state. Further, it is shown that for a given value of quantum coherence measured by the relative entropy of coherence, maximally nonlocal mixed states of X type [which are characterized by the maximal violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality] have maximum quantum coherence as measured by l1 norm of coherence. In addition, the amount of coherence measured by l1 norm of coherence for a Werner state is found to be always less than that for a maximally nonlocal mixed state even when they possess an equal amount of coherence measured by the relative entropy of coherence. In our study, we have also explored the connection between the above resource theory-based measures of coherence and the recently introduced first-order coherence and maximum first-order coherence measures for two-qubit systems. We find that while there seems to be no obvious connection between the resource theory-based measures and first-order and maximum first-order coherence, a correlation seems to exist between the maximum first-order coherence and concurrence, both of which are basis independent quantities. These observations could be of use in obtaining a deeper understanding of the interconnections between various measures of quantum coherence.
Název v anglickém jazyce
Comparing coherence measures for X states: Can quantum states be ordered based on quantum coherence?
Popis výsledku anglicky
Quantum coherence is an essential resource for quantum information processing and various quantitative measures of it have been introduced. However, the interconnections between these measures are not yet understood properly. Here, using a large set of randomly prepared two-qubit X states (as well as general two-qubit states) and analytically obtained expressions of various measures of coherence (e.g., relative entropy of coherence, l1 norm of coherence, coherence via skew information, and first-order coherence), it is established that these measures of quantum coherence cannot be used to perform ordering of a set of quantum states based on the amount of coherence present in a state. Further, it is shown that for a given value of quantum coherence measured by the relative entropy of coherence, maximally nonlocal mixed states of X type [which are characterized by the maximal violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality] have maximum quantum coherence as measured by l1 norm of coherence. In addition, the amount of coherence measured by l1 norm of coherence for a Werner state is found to be always less than that for a maximally nonlocal mixed state even when they possess an equal amount of coherence measured by the relative entropy of coherence. In our study, we have also explored the connection between the above resource theory-based measures of coherence and the recently introduced first-order coherence and maximum first-order coherence measures for two-qubit systems. We find that while there seems to be no obvious connection between the resource theory-based measures and first-order and maximum first-order coherence, a correlation seems to exist between the maximum first-order coherence and concurrence, both of which are basis independent quantities. These observations could be of use in obtaining a deeper understanding of the interconnections between various measures of quantum coherence.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1305" target="_blank" >LO1305: Rozvoj centra pokročilých technologií a materiálů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Quantum Information Processing
ISSN
1570-0755
e-ISSN
—
Svazek periodika
18
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
"295-1"-"295-22"
Kód UT WoS článku
000481864200001
EID výsledku v databázi Scopus
2-s2.0-85070958619