Pseudo EMV-algebras. I. basic properties
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73597650" target="_blank" >RIV/61989592:15310/19:73597650 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.researchgate.net/publication/337464364_Pseudo_EMV-algebras_I_Basic_Properties" target="_blank" >https://www.researchgate.net/publication/337464364_Pseudo_EMV-algebras_I_Basic_Properties</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Pseudo EMV-algebras. I. basic properties
Popis výsledku v původním jazyce
We introduce pseudo EMV-algebras which are a non-commutative generalization of both MV-algebras and generalized Boolean algebras. The existence of a top element is not assumed. The paper has two parts. In the present one we study basic properties of pseudo EMV-algebras as ideals and homomorphisms. The class of all pseudo EMV-algebras is not a variety and rather a more general class, called a q-variety, but similar to a variety. We study representable pseudo EMV-algebras, normal-valued ones, and pseudo EMV-algebras whose every maximal ideal is normal. The second part shows that every pseudo EMV-algebra without top element can be embedded into a pseudo EMV-algebra with top element as a maximal and normal ideal of the latter one. We present a categorical equivalence of the category of pseudo EMV-algebras without top element with a special category of pseudo MV-algebras or with a special category of ℓ-groups. Finally, we study states as finitely additive mappings as well as state-morphisms on pseudo EMV-algebras and we present their representation as an integral over a regular Borel probability measure.
Název v anglickém jazyce
Pseudo EMV-algebras. I. basic properties
Popis výsledku anglicky
We introduce pseudo EMV-algebras which are a non-commutative generalization of both MV-algebras and generalized Boolean algebras. The existence of a top element is not assumed. The paper has two parts. In the present one we study basic properties of pseudo EMV-algebras as ideals and homomorphisms. The class of all pseudo EMV-algebras is not a variety and rather a more general class, called a q-variety, but similar to a variety. We study representable pseudo EMV-algebras, normal-valued ones, and pseudo EMV-algebras whose every maximal ideal is normal. The second part shows that every pseudo EMV-algebra without top element can be embedded into a pseudo EMV-algebra with top element as a maximal and normal ideal of the latter one. We present a categorical equivalence of the category of pseudo EMV-algebras without top element with a special category of pseudo MV-algebras or with a special category of ℓ-groups. Finally, we study states as finitely additive mappings as well as state-morphisms on pseudo EMV-algebras and we present their representation as an integral over a regular Borel probability measure.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Applied Logics-IfCoLoG Journal of Logics and their Applications
ISSN
2055-3706
e-ISSN
—
Svazek periodika
6
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
43
Strana od-do
1285-1327
Kód UT WoS článku
000519571900005
EID výsledku v databázi Scopus
2-s2.0-85076982405