Chemical Tuning of Specific Capacitance in Functionalized Fluorographene
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73597992" target="_blank" >RIV/61989592:15310/19:73597992 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.chemmater.9b00655" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.chemmater.9b00655</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.chemmater.9b00655" target="_blank" >10.1021/acs.chemmater.9b00655</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Chemical Tuning of Specific Capacitance in Functionalized Fluorographene
Popis výsledku v původním jazyce
Owing to its high surface area and excellent conductivity, graphene is considered an efficient electrode material for supercapacitors. However, its restacking in electrolytes hampers its broader utilization in this field. Covalent graphene functionalization is a promising strategy for providing more efficient electrode materials. The chemistry of fluorographene is particularly attractive as it allows scalable chemical production of useful graphene derivatives. Nevertheless, the influence of chemical composition on the capacitance of graphene derivatives is a largely unexplored field in nanomaterials science, limiting further development of efficient graphene-based electrode materials. In the present study, we obtained well-defined graphene derivatives differing in chemical composition but with similar morphologies by controlling the reaction time of 5-aminoisophthalic acid with fluorographene. The gravimetric specific capacitance ranged from 271 to 391 F g(-1) (in 1 M Na2SO4), with the maximum value achieved by a delicate balance between the amount of covalently grafted functional groups and density of the sp(2) carbon network governing the conductivity of the material. Molecular dynamics simulations showed that covalent grafting of functional groups with charged and ionophilic/hydrophilic character significantly enhanced the ionic concentration and hydration due to favorable electrostatic interactions among the charged centers and ions/water molecules. Therefore, conductive and hydrophilic graphitic surfaces are important features of graphene-based supercapacitor electrode materials. These findings provide important insights into the role of chemical composition on capacitance and pave the way toward designing more efficient graphene-based supercapacitor electrode materials.
Název v anglickém jazyce
Chemical Tuning of Specific Capacitance in Functionalized Fluorographene
Popis výsledku anglicky
Owing to its high surface area and excellent conductivity, graphene is considered an efficient electrode material for supercapacitors. However, its restacking in electrolytes hampers its broader utilization in this field. Covalent graphene functionalization is a promising strategy for providing more efficient electrode materials. The chemistry of fluorographene is particularly attractive as it allows scalable chemical production of useful graphene derivatives. Nevertheless, the influence of chemical composition on the capacitance of graphene derivatives is a largely unexplored field in nanomaterials science, limiting further development of efficient graphene-based electrode materials. In the present study, we obtained well-defined graphene derivatives differing in chemical composition but with similar morphologies by controlling the reaction time of 5-aminoisophthalic acid with fluorographene. The gravimetric specific capacitance ranged from 271 to 391 F g(-1) (in 1 M Na2SO4), with the maximum value achieved by a delicate balance between the amount of covalently grafted functional groups and density of the sp(2) carbon network governing the conductivity of the material. Molecular dynamics simulations showed that covalent grafting of functional groups with charged and ionophilic/hydrophilic character significantly enhanced the ionic concentration and hydration due to favorable electrostatic interactions among the charged centers and ions/water molecules. Therefore, conductive and hydrophilic graphitic surfaces are important features of graphene-based supercapacitor electrode materials. These findings provide important insights into the role of chemical composition on capacitance and pave the way toward designing more efficient graphene-based supercapacitor electrode materials.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000754" target="_blank" >EF16_019/0000754: Nanotechnologie pro budoucnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
CHEMISTRY OF MATERIALS
ISSN
0897-4756
e-ISSN
—
Svazek periodika
31
Číslo periodika v rámci svazku
13
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
4698-4709
Kód UT WoS článku
000475408400009
EID výsledku v databázi Scopus
2-s2.0-85068082920