Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Robust Principal Component Analysis for Compositional Tables

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73598524" target="_blank" >RIV/61989592:15310/20:73598524 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.tandfonline.com/doi/full/10.1080/02664763.2020.1722078" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/02664763.2020.1722078</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/02664763.2020.1722078" target="_blank" >10.1080/02664763.2020.1722078</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Robust Principal Component Analysis for Compositional Tables

  • Popis výsledku v původním jazyce

    A data table arranged according to two factors can often be considered a compositional table. An example is the number of unemployed people, split according to gender and age classes. Analyzed as compositions, the relevant information consists of ratios between different cells of such a table. This is particularly useful when analyzing several compositional tables jointly, where the absolute numbers are in very different ranges, e.g. if unemployment data are considered from different countries. Within the framework of the logratio methodology, compositional tables can be decomposed into independent and interactive parts, and orthonormal coordinates can be assigned to these parts. However, these coordinates usually require some prior knowledge about the data, and they are not easy to handle for exploring the relationships between the given factors. Here we propose a special choice of coordinates with direct relation to centered logratio (clr) coefficients, which are particularly useful for an interpretation in terms of the original cells of the tables. With these coordinates, robust principal component analysis (rPCA) is performed for dimension reduction, allowing to investigate relationships between the factors. The link between orthonormal coordinates and clr coefficients enables to apply rPCA, which would otherwise suffer from the singularity of clr coefficients.

  • Název v anglickém jazyce

    Robust Principal Component Analysis for Compositional Tables

  • Popis výsledku anglicky

    A data table arranged according to two factors can often be considered a compositional table. An example is the number of unemployed people, split according to gender and age classes. Analyzed as compositions, the relevant information consists of ratios between different cells of such a table. This is particularly useful when analyzing several compositional tables jointly, where the absolute numbers are in very different ranges, e.g. if unemployment data are considered from different countries. Within the framework of the logratio methodology, compositional tables can be decomposed into independent and interactive parts, and orthonormal coordinates can be assigned to these parts. However, these coordinates usually require some prior knowledge about the data, and they are not easy to handle for exploring the relationships between the given factors. Here we propose a special choice of coordinates with direct relation to centered logratio (clr) coefficients, which are particularly useful for an interpretation in terms of the original cells of the tables. With these coordinates, robust principal component analysis (rPCA) is performed for dimension reduction, allowing to investigate relationships between the factors. The link between orthonormal coordinates and clr coefficients enables to apply rPCA, which would otherwise suffer from the singularity of clr coefficients.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    JOURNAL OF APPLIED STATISTICS

  • ISSN

    0266-4763

  • e-ISSN

  • Svazek periodika

    48

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    20

  • Strana od-do

    214-233

  • Kód UT WoS článku

    000512574700001

  • EID výsledku v databázi Scopus

    2-s2.0-85078938090