Facile Combined Experimental and Computational Study: g-C3N4@PDMS-Assisted Knoevenagel Condensation Reaction under Phase Transfer Conditions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73601799" target="_blank" >RIV/61989592:15310/20:73601799 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.9b04082" target="_blank" >https://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.9b04082</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acssuschemeng.9b04082" target="_blank" >10.1021/acssuschemeng.9b04082</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Facile Combined Experimental and Computational Study: g-C3N4@PDMS-Assisted Knoevenagel Condensation Reaction under Phase Transfer Conditions
Popis výsledku v původním jazyce
A new recyclable g-C3N4@PDMS heterogeneous catalyst has been developed as an efficient catalyst with an appreciable reactivity toward Knoevenagel condensation in the presence of crown ether (PTC). Here, a two-dimensional (2D) printed g-C3N4@PDMS heterogeneous catalyst opens the gate of possibility for high mechanical strength with the possibility of an appreciable recyclability. Various performed parameter studies clarify that g-C3N4 active sites exclusively enhance the cinnamic acid synthesis under mild reaction conditions. To explore the molecular mechanism of the condensation reaction over the heterogeneous catalyst surface, a systematic density functional theory-based computational study has been carried out. g-C3N4 material-based model substrate consisting of amine active sites has been considered for modeling the condensation reaction. The reaction energy profile for the condensation reaction between benzaldehyde and para-nitrotoluene on model substrate has been analyzed. The g-C3N4@PDMS catalyst is reused for several runs without loss in reaction rate, evidently due to the g-C3N4 active site being effectively implanted with highly resistant poly(dimethylsiloxane) (PDMS) layer. Recycled g-C3N4@PDMS heterogeneous 2D film characterization studies, viz., X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy, confirm that the active site and molecular structure are well preserved even after multiple reaction cycles. Various reactants were screened using the heterogeneous g-C3N4@PDMS catalyst, exhibiting an appreciable product yield (similar to 99%) at room temperature in a short reaction time of 30 min.
Název v anglickém jazyce
Facile Combined Experimental and Computational Study: g-C3N4@PDMS-Assisted Knoevenagel Condensation Reaction under Phase Transfer Conditions
Popis výsledku anglicky
A new recyclable g-C3N4@PDMS heterogeneous catalyst has been developed as an efficient catalyst with an appreciable reactivity toward Knoevenagel condensation in the presence of crown ether (PTC). Here, a two-dimensional (2D) printed g-C3N4@PDMS heterogeneous catalyst opens the gate of possibility for high mechanical strength with the possibility of an appreciable recyclability. Various performed parameter studies clarify that g-C3N4 active sites exclusively enhance the cinnamic acid synthesis under mild reaction conditions. To explore the molecular mechanism of the condensation reaction over the heterogeneous catalyst surface, a systematic density functional theory-based computational study has been carried out. g-C3N4 material-based model substrate consisting of amine active sites has been considered for modeling the condensation reaction. The reaction energy profile for the condensation reaction between benzaldehyde and para-nitrotoluene on model substrate has been analyzed. The g-C3N4@PDMS catalyst is reused for several runs without loss in reaction rate, evidently due to the g-C3N4 active site being effectively implanted with highly resistant poly(dimethylsiloxane) (PDMS) layer. Recycled g-C3N4@PDMS heterogeneous 2D film characterization studies, viz., X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy, confirm that the active site and molecular structure are well preserved even after multiple reaction cycles. Various reactants were screened using the heterogeneous g-C3N4@PDMS catalyst, exhibiting an appreciable product yield (similar to 99%) at room temperature in a short reaction time of 30 min.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS Sustainable Chemistry & Engineering
ISSN
2168-0485
e-ISSN
—
Svazek periodika
8
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
2350-2360
Kód UT WoS článku
000514488600003
EID výsledku v databázi Scopus
2-s2.0-85078541989