Ultrafast critical ground state preparation via bang-bang protocols
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73601839" target="_blank" >RIV/61989592:15310/20:73601839 - isvavai.cz</a>
Výsledek na webu
<a href="https://iopscience.iop.org/article/10.1088/1367-2630/abb1df/pdf" target="_blank" >https://iopscience.iop.org/article/10.1088/1367-2630/abb1df/pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1367-2630/abb1df" target="_blank" >10.1088/1367-2630/abb1df</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Ultrafast critical ground state preparation via bang-bang protocols
Popis výsledku v původním jazyce
The fast and faithful preparation of the ground state of quantum systems is a challenging but crucial task for several applications in the realm of quantum-based technologies. Decoherence limits the maximum time-window allowed to an experiment to faithfully achieve such desired states. This is of particular significance in systems featuring a quantum phase transition, where the vanishing energy gap challenges an adiabatic ground state preparation. We show that a bang-bang protocol, consisting of a time evolution under two different values of an externally tunable parameter, allows for a high-fidelity ground state preparation in evolution times no longer than those required by the application of standard optimal control techniques, such as the chopped-random basis quantum optimization. In addition, owing to their reduced number of variables, such bang-bang protocols are very well suited to optimization tasks, reducing the high computational cost of other optimal control protocols. We benchmark the performance of such approach through two paradigmatic models, namely the Landau-Zener and the Lipkin-Meshkov-Glick model. Remarkably, we find that the critical ground state of the latter model, i.e. its ground state at the critical point, can be prepared with a high fidelity in a total evolution time that scales slower than the inverse of the vanishing energy gap.
Název v anglickém jazyce
Ultrafast critical ground state preparation via bang-bang protocols
Popis výsledku anglicky
The fast and faithful preparation of the ground state of quantum systems is a challenging but crucial task for several applications in the realm of quantum-based technologies. Decoherence limits the maximum time-window allowed to an experiment to faithfully achieve such desired states. This is of particular significance in systems featuring a quantum phase transition, where the vanishing energy gap challenges an adiabatic ground state preparation. We show that a bang-bang protocol, consisting of a time evolution under two different values of an externally tunable parameter, allows for a high-fidelity ground state preparation in evolution times no longer than those required by the application of standard optimal control techniques, such as the chopped-random basis quantum optimization. In addition, owing to their reduced number of variables, such bang-bang protocols are very well suited to optimization tasks, reducing the high computational cost of other optimal control protocols. We benchmark the performance of such approach through two paradigmatic models, namely the Landau-Zener and the Lipkin-Meshkov-Glick model. Remarkably, we find that the critical ground state of the latter model, i.e. its ground state at the critical point, can be prepared with a high fidelity in a total evolution time that scales slower than the inverse of the vanishing energy gap.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
New Journal of Physics
ISSN
1367-2630
e-ISSN
—
Svazek periodika
22
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
" 093050-1"-" 093050-12"
Kód UT WoS článku
000574556700001
EID výsledku v databázi Scopus
2-s2.0-85091629600