Pulsed atom-mechanical quantum non-demolition gate
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73602063" target="_blank" >RIV/61989592:15310/20:73602063 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.nature.com/articles/s41534-019-0229-9.pdf" target="_blank" >https://www.nature.com/articles/s41534-019-0229-9.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41534-019-0229-9" target="_blank" >10.1038/s41534-019-0229-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Pulsed atom-mechanical quantum non-demolition gate
Popis výsledku v původním jazyce
Hybridization of quantum science and technology crucially depends on quantum gates between various physical systems. The different platforms have different fundamental physics and, therefore, diverse advantages in various applications. Many applications require nearly ideal quantum gates with variable large interaction gain and sufficient entangling power. Moreover, pulsed gates are advantageous for fast quantum circuits. For quantum systems with continuous variables, the quantum non-demolition (QND) gate is the most basic. It is an entangling gate that simultaneously keeps a variable of the interacting system unchanged. This feature is useful for quantum circuits from quantum sensing to continuous variable quantum computing. Currently, atomic ensembles storing quantum states of radiation and mechanical oscillators transducing them are two major but very different continuous-variable matter platforms. We propose a high-quality continuous-variable QND gate between an atomic ensemble and a mechanical oscillator in the separated optical cavities connected by propagating optical pulses. We demonstrate that squeezing of light pulses, homodyne measurement, and optimized feedforward control used to build the gate are sufficient to reach an interaction gain up to 50 with nearly ideal entangling power.
Název v anglickém jazyce
Pulsed atom-mechanical quantum non-demolition gate
Popis výsledku anglicky
Hybridization of quantum science and technology crucially depends on quantum gates between various physical systems. The different platforms have different fundamental physics and, therefore, diverse advantages in various applications. Many applications require nearly ideal quantum gates with variable large interaction gain and sufficient entangling power. Moreover, pulsed gates are advantageous for fast quantum circuits. For quantum systems with continuous variables, the quantum non-demolition (QND) gate is the most basic. It is an entangling gate that simultaneously keeps a variable of the interacting system unchanged. This feature is useful for quantum circuits from quantum sensing to continuous variable quantum computing. Currently, atomic ensembles storing quantum states of radiation and mechanical oscillators transducing them are two major but very different continuous-variable matter platforms. We propose a high-quality continuous-variable QND gate between an atomic ensemble and a mechanical oscillator in the separated optical cavities connected by propagating optical pulses. We demonstrate that squeezing of light pulses, homodyne measurement, and optimized feedforward control used to build the gate are sufficient to reach an interaction gain up to 50 with nearly ideal entangling power.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
npj Quantum Information
ISSN
2056-6387
e-ISSN
—
Svazek periodika
6
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
8
Strana od-do
1-8
Kód UT WoS článku
000511400100003
EID výsledku v databázi Scopus
2-s2.0-85077588454