Dynamical tunneling of a nanomechanical oscillator
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73602152" target="_blank" >RIV/61989592:15310/20:73602152 - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.aps.org/pra/pdf/10.1103/PhysRevA.102.043513" target="_blank" >https://journals.aps.org/pra/pdf/10.1103/PhysRevA.102.043513</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevA.102.043513" target="_blank" >10.1103/PhysRevA.102.043513</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dynamical tunneling of a nanomechanical oscillator
Popis výsledku v původním jazyce
The study of the quantum to classical transition is of fundamental as well as technological importance, and focuses on mesoscopic devices, with a size for which either classical physics or quantum physics can be brought to dominate. A particularly diverse selection of such devices is available in cavity quantum optomechanics. We show that these can be leveraged for the study of dynamical tunneling in a quantum chaotic system. This effect probes the quantum to classical transition deeply, since tunneling rates sensitively depend on the ability of the quantum system to resolve the underlying classical phase space. We show that the effective Planck's constant, which determines this phase space resolution, can be varied over orders of magnitude as a function of tunable parameters in an optomechanical experiment. Specifically, we consider a membrane-in-the-middle configuration of a mechanical oscillator within an optical cavity, where the intracavity field is modulated periodically by the external laser source. We demonstrate that a mixed regular and chaotic phase space can be engineered in one spatial dimension, through a significant quartic optomechanical interaction. For that case, we explore the expected dynamical tunneling rates using Floquet theory and map out values of the effective Planck's constant that should be within practical reach.
Název v anglickém jazyce
Dynamical tunneling of a nanomechanical oscillator
Popis výsledku anglicky
The study of the quantum to classical transition is of fundamental as well as technological importance, and focuses on mesoscopic devices, with a size for which either classical physics or quantum physics can be brought to dominate. A particularly diverse selection of such devices is available in cavity quantum optomechanics. We show that these can be leveraged for the study of dynamical tunneling in a quantum chaotic system. This effect probes the quantum to classical transition deeply, since tunneling rates sensitively depend on the ability of the quantum system to resolve the underlying classical phase space. We show that the effective Planck's constant, which determines this phase space resolution, can be varied over orders of magnitude as a function of tunable parameters in an optomechanical experiment. Specifically, we consider a membrane-in-the-middle configuration of a mechanical oscillator within an optical cavity, where the intracavity field is modulated periodically by the external laser source. We demonstrate that a mixed regular and chaotic phase space can be engineered in one spatial dimension, through a significant quartic optomechanical interaction. For that case, we explore the expected dynamical tunneling rates using Floquet theory and map out values of the effective Planck's constant that should be within practical reach.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PHYSICAL REVIEW A
ISSN
2469-9926
e-ISSN
—
Svazek periodika
102
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
"043513-1"-"043513-10"
Kód UT WoS článku
000579149900005
EID výsledku v databázi Scopus
2-s2.0-85093073540