Hybrid-Liouvillian formalism connecting exceptional points of non-Hermitian Hamiltonians and Liouvillians via postselection of quantum trajectories
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73602375" target="_blank" >RIV/61989592:15310/20:73602375 - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.aps.org/pra/pdf/10.1103/PhysRevA.101.062112" target="_blank" >https://journals.aps.org/pra/pdf/10.1103/PhysRevA.101.062112</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevA.101.062112" target="_blank" >10.1103/PhysRevA.101.062112</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hybrid-Liouvillian formalism connecting exceptional points of non-Hermitian Hamiltonians and Liouvillians via postselection of quantum trajectories
Popis výsledku v původním jazyce
Exceptional points (EPs) are degeneracies of classical and quantum open systems, which are studied in many areas of physics including optics, optoelectronics, plasmonics, and condensed matter physics. In the semiclassical regime, open systems can be described by phenomenological effective non-Hermitian Hamiltonians (NHHs) capturing the effects of gain and loss in terms of imaginary fields. The EPs that characterize the spectra of such Hamiltonians (HEPs) describe the time evolution of a system without quantum jumps. It is well known that a full quantum treatment describing more generic dynamics must crucially take into account such quantum jumps. In a recent paper [F. Minganti et al., Phys. Rev. A 100, 062131 (2019)], we generalized the notion of EPs to the spectra of Liouvillian superoperators governing open system dynamics described by Lindblad master equations. Intriguingly, we found that in situations where a classical-to-quantum correspondence exists, the two types of dynamics can yield different EPs. In a recent experimental work [M. Naghiloo et al., Nat. Phys. 15, 1232 (2019)], it was shown that one can engineer a non-Hermitian Hamiltonian in the quantum limit by postselecting on certain quantum jump trajectories. This raises an interesting question concerning the relation between Hamiltonian and Lindbladian EPs, and quantum trajectories. We discuss these connections by introducing a hybrid-Liouvillian superoperator, capable of describing the passage from an NHH (when one postselects only those trajectories without quantum jumps) to a true Liouvillian including quantum jumps (without postselection). Beyond its fundamental interest, our approach allows to intuitively relate the effects of postselection and finite-efficiency detectors.
Název v anglickém jazyce
Hybrid-Liouvillian formalism connecting exceptional points of non-Hermitian Hamiltonians and Liouvillians via postselection of quantum trajectories
Popis výsledku anglicky
Exceptional points (EPs) are degeneracies of classical and quantum open systems, which are studied in many areas of physics including optics, optoelectronics, plasmonics, and condensed matter physics. In the semiclassical regime, open systems can be described by phenomenological effective non-Hermitian Hamiltonians (NHHs) capturing the effects of gain and loss in terms of imaginary fields. The EPs that characterize the spectra of such Hamiltonians (HEPs) describe the time evolution of a system without quantum jumps. It is well known that a full quantum treatment describing more generic dynamics must crucially take into account such quantum jumps. In a recent paper [F. Minganti et al., Phys. Rev. A 100, 062131 (2019)], we generalized the notion of EPs to the spectra of Liouvillian superoperators governing open system dynamics described by Lindblad master equations. Intriguingly, we found that in situations where a classical-to-quantum correspondence exists, the two types of dynamics can yield different EPs. In a recent experimental work [M. Naghiloo et al., Nat. Phys. 15, 1232 (2019)], it was shown that one can engineer a non-Hermitian Hamiltonian in the quantum limit by postselecting on certain quantum jump trajectories. This raises an interesting question concerning the relation between Hamiltonian and Lindbladian EPs, and quantum trajectories. We discuss these connections by introducing a hybrid-Liouvillian superoperator, capable of describing the passage from an NHH (when one postselects only those trajectories without quantum jumps) to a true Liouvillian including quantum jumps (without postselection). Beyond its fundamental interest, our approach allows to intuitively relate the effects of postselection and finite-efficiency detectors.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PHYSICAL REVIEW A
ISSN
2469-9926
e-ISSN
—
Svazek periodika
101
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
"062112-1"-"062112-14"
Kód UT WoS článku
000548140000007
EID výsledku v databázi Scopus
2-s2.0-85087589958