Detecting Nonclassical Correlations in Levitated Cavity Optomechanics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73602684" target="_blank" >RIV/61989592:15310/20:73602684 - isvavai.cz</a>
Výsledek na webu
<a href="https://arxiv.org/pdf/2003.09894.pdf" target="_blank" >https://arxiv.org/pdf/2003.09894.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevApplied.14.054052" target="_blank" >10.1103/PhysRevApplied.14.054052</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Detecting Nonclassical Correlations in Levitated Cavity Optomechanics
Popis výsledku v původním jazyce
Nonclassical optomechanical correlations enable optical control of mechanical motion beyond the limitations of classical driving. Here we investigate the feasibility of using pulsed cavity optomechanics to create and verify nonclassical phase-sensitive correlations between light and the motion of a levitated nanoparticle in a realistic scenario. We show that optomechanical two-mode squeezing can persist even at the elevated temperatures of state-of-the-art experimental setups. We introduce a detection scheme based on optical homodyning that allows the revealing of nonclassical correlations without full optomechanical state tomography. We provide an analytical treatment using the rotating-wave approximation (RWA) in the resolved-sideband regime and prove its validity with a full numerical solution of the Lyapunov equation beyond the RWA. We build on parameters of current experiments for our analysis and conclude that the observation of nonclassical correlations, which are essential for quantum sensing, quantum engines, and quantum simulations with levitated nanoparticles, is possible with state-of-the-art capabilities. The general treatment can be applied to other optomechanical platforms.
Název v anglickém jazyce
Detecting Nonclassical Correlations in Levitated Cavity Optomechanics
Popis výsledku anglicky
Nonclassical optomechanical correlations enable optical control of mechanical motion beyond the limitations of classical driving. Here we investigate the feasibility of using pulsed cavity optomechanics to create and verify nonclassical phase-sensitive correlations between light and the motion of a levitated nanoparticle in a realistic scenario. We show that optomechanical two-mode squeezing can persist even at the elevated temperatures of state-of-the-art experimental setups. We introduce a detection scheme based on optical homodyning that allows the revealing of nonclassical correlations without full optomechanical state tomography. We provide an analytical treatment using the rotating-wave approximation (RWA) in the resolved-sideband regime and prove its validity with a full numerical solution of the Lyapunov equation beyond the RWA. We build on parameters of current experiments for our analysis and conclude that the observation of nonclassical correlations, which are essential for quantum sensing, quantum engines, and quantum simulations with levitated nanoparticles, is possible with state-of-the-art capabilities. The general treatment can be applied to other optomechanical platforms.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review Applied
ISSN
2331-7019
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
"054052-1"-"054052-10"
Kód UT WoS článku
000593935000002
EID výsledku v databázi Scopus
2-s2.0-85097575533